Effect of cadmium and chromium adsorption on the zeta potential of clays

I. Ghorbel-Abida,b,*, C. Vagnerc, R. Denoyelc, M. Trabelsi-Ayadib

aLaboratoire Méthodes et Techniques d’Analyse (LMTA), Institut National de Recherche et d’Analyse Physico-chimique (INRAP), Tunis, Tunisie, email: ibtissem.gh.ab@gmail.com (I. Ghorbel-Abid)

bLaboratoire des Applications de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE), Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisie, email: malikatrabelsi_ayadi@yahoo.fr (M. Trabelsi-Ayadi)

cAix Marseille Université, CNRS, MADIREL UMR 7246, 13397 Marseille, France, emails: christelle.vagner@univ-amu.fr (C. Vagner), renaud.denoyel@univ-amu.fr (R. Denoyel)

Received 25 March 2015; Accepted 11 December 2015

\textbf{ABSTRACT}

The aim of this study was to evaluate the efficiency of two Tunisian mineral clays to capture chromium(III) and cadmium(II) present in landfills leachate and to understand the corresponding mechanisms of sorption. Kinetic studies, adsorption isotherms, particle size distributions as well as zeta potential evolution with adsorbed amount, and pH were studied. The kinetic study revealed that a pseudo-second-order model agrees with the heavy metals adsorption experimental values for both clays. Negative zeta potential was obtained over the entire studied pH range (3–8) and no isoelectric point was found. Adsorption of Cr(III) had a significant effect on the zeta potential which goes from negative values to positive ones, indicating specific adsorption. Upon the addition of Cd(II), the clay surfaces stayed negatively charged whatever the cadmium concentration.

\textbf{Keywords}: Zeta potential; Smectite; Illite; Chromium; Cadmium; Sorption

*Corresponding author.

Presented at the 7th International Conference on Water Resources in the Mediterranean Basin (WATMED7)
8–11 October 2014, Marrakesh, Morocco

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.