Synthesis and investigation of photocatalytic properties of Au/Fe$_3$O$_4$ nanocomposite materials for degradation of methylene blue

Asif Mahmooda,*, Shahid Mahmood Ramayb, Yousef S. Al-Zaghayera,c, Abdul-Aziz N. AlHazaab, Waheed A. Al Masarya, Shahid Atiqd

aDepartment of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia, Tel. +966 11 46 79966; Fax: +996 11 46 78770; email: ahayat@ksu.edu.sa (A. Mahmood), Tel. +966 11 46 76855; email: yszs@ksu.edu.sa (Y.S. Al-Zaghayer), Tel. +966 11 46 76853; email: walmasry@ksu.edu.sa (W.A. Al Masary)

bDepartment of Physics and Astronomy, Colleges of Science, King Saud University, Riyadh, Saudi Arabia, Tel. +966 11 4678760; email: smramay@yahoo.com (S.M. Ramay), Tel. +966 11 46 76640; email: aalhazau@ksu.edu.sa (A.-A.N. AlHazaa)

cSupervisor of Industrial Catalysts Research Chair, King Saud University, Riyadh 11421, Saudi Arabia

dCentre of Excellence in Solid State Physics, University of the Punjab, New Campus, Lahore 54590, Pakistan, Tel. +92 300 7110532; email: shahidatiqpasrur@yahoo.com

Received 8 April 2015; Accepted 23 September 2015

ABSTRACT

In this work, Au/Fe$_3$O$_4$ nanocomposite materials with exact spinel structure were successfully synthesized where impurities-free Fe$_3$O$_4$ was prepared using sol–gel auto-combustion method and gold was doped with various concentrations 1, 3, and 5 wt.% using conventional deposition–precipitation method. Methylene blue with fixed concentration (0.05 mM) was used to investigate the photocatalytic activity under visible light. Due to homogeneous and controlled compositions, Au/Fe$_3$O$_4$ nanocomposites showed enhanced photocatalytic efficiency than pure Fe$_3$O$_4$.

Keywords: Single-phase Fe$_3$O$_4$; Composite materials; Au nanoparticles; Photocatalytic activity; Methylene blue