Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: kinetic, equilibrium and thermodynamic studies

Ahmed Amine Azzaza,b, Salah Jellalia,*, Aymen Amine Assadic, Latifa Bousselmia

aWastewater Treatment Laboratory, Water Research and Technologies Center, University of Carthage, P.O. Box 273, Soliman 8020, Tunisia, email: ahmedamine.azzaz@certe.rnrt.tn (A.A. Azzaz), Tel. +216 79325044; Fax: +216 79325802; emails: salah.jellali@certe.rnrt.tn (S. Jellali), latifa.bousselmi@certe.rnrt.tn (L. Bousselmi)
bFaculty of Science of Bizerte, University of Carthage, Jarzouna 7000, Bizerte, Tunisia
cLaboratory of Chemical Sciences of Rennes Sciences—Chemical and Process Engineering Team, MRU 6226 NCSR, ENSCR-11, Allée de Beaulieu, CS 508307-35708 Rennes, France, email: aymen.assadi@ensc-rennes.fr

Received 28 July 2015; Accepted 25 September 2015

ABSTRACT

In order to assess the potential use of low-cost materials for dye removal from aqueous solutions, the adsorption of cationic dye methylene blue (MB) onto orange tree sawdust was studied under static mode using raw sawdust (ROS) and chemically modified sawdust (MOS). The effect of several parameters such as contact time, initial dye concentrations, initial pH, adsorbent dose, and temperature were also investigated. Results showed that the adsorption kinetic data of MB onto both materials were well fitted by the second-order model and the equilibrium state was reached after 180 min of contact time. For both ROS and MOS, MB removal efficiency was improved by the increase in the initial aqueous concentrations, adsorbent dose, and aqueous pH. Moreover, MB adsorption data at equilibrium were well fitted by Langmuir model suggesting a probable monolayer adsorption process. The chemical treatment of the orange tree sawdust with sodium hydroxide (1 M) significantly increased the density of sorption sites and lead to the appearance of new functional groups. Therefore, MB removal capacity increased from about 40 mg/g for ROS to 111 mg/g for MOS at an initial pH value 6.0. The thermodynamic study demonstrated that MB adsorption was endothermic for ROS and spontaneous and exothermic for MOS, respectively. Desorption experiments with HNO\textsubscript{3} acidic solutions proved that MB was significantly desorbed from the tested adsorbents, which offers a possible reusability. All these findings indicate that alkaline-treated orange tree sawdust could be employed as an efficient low-cost and eco-friendly adsorbent for cationic dye removal from industrial wastewaters.

Keywords: Orange tree sawdust; Chemical pretreatment; Methylene Blue; Adsorption; Thermodynamics

*Corresponding author.

Presented at the Sustainable Water Management Conference on Sustainable Domestic Water Use in Mediterranean Regions (SWMED), 19–21 February 2015, Tunis, Tunisia

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.