Filtration properties of membranes with active graphene oxide layer

Paulina Cytarska*, Stanisław Koter*, Grzegorz Trykowski, Leszek Stobiński

Nicolaus Copernicus University in Toruń, Faculty of Chemistry, ul. Gagarina 7, 87-100 Toruń, Poland, Tel. +48 56 611 43 18; email: skoter@umk.pl
Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warszawa, Poland

Received 12 April 2016; Accepted 20 July 2016

ABSTRACT

Filtration properties of membranes obtained by deposition of a few layer graphene oxide onto a polyamide support, with and without borate treatment, were examined. Filtrations of water, dilute solutions of electrolytes (Na₂SO₄, NaCl, MgSO₄, MgCl₂), and dyes (bromophenol blue, eriochrome black T) were performed. It was found that the observed electrolyte retention series (Na₂SO₄ > NaCl > MgSO₄ > MgCl₂) was in accordance with the Donnan exclusion theory. The membrane treated with borate and of higher graphene oxide load showed higher retention of sulfates than the untreated one. Despite of lower molecular weight, eriochrome black T was practically completely rejected by both types of membranes, contrary to bromophenol blue, irrespectively of its form (undissociated – retention 68%, dissociated – 85%).

Keywords: Nanofiltration; Graphene oxide; Hydrodynamic permeability; Electrolyte retention; Dye retention

* Corresponding author.

Presented at the conference on Membranes and Membrane Processes in Environmental Protection (MEMPEP 2016), Zakopane, Poland, 15–19 June 2016.