

## Investigation of equilibrium, kinetics and thermodynamics of extracted chitin from shrimp shell in reactive blue 29 (RB-29) removal from aqueous solutions

Ali Naghizadeh<sup>a,b,\*</sup>, Maryam Ghafouri<sup>a</sup>, Ali Jafari<sup>c</sup>

<sup>a</sup>Department of Environmental Health Engineering, Faulty of Health, Birjand University of Medical Sciences (BUMS), Birjand, Iran, Tel. +9856132381665; Fax: +9856132381132; emails: al.naghizadeh@yahoo.com (A. Naghizadeh), maryamghafoory787@gmail.com (M. Ghafouri)

<sup>b</sup>Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran <sup>c</sup>Department of Environmental Health Engineering, Faulty of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran, email: jafari\_a99@yahoo.com (A. Jafari)

Received 25 May 2016; Accepted 31 December 2016

## ABSTRACT

The presence of reactive dyes in aqueous medium cause many problems; therefore, it is necessary to reduce its content in industrial effluents before their discharge into environment. The aim of this study was to investigate the removal of reactive blue 29 (RB-29) dye from aqueous solutions using extracted chitin from shrimp shells as an adsorbent. This study was conducted in a batch experimental system. After extraction of chitin from shrimp shells, the effects of different variables such as pH, RB-29 concentration, contact time and adsorbent dose were investigated. Furthermore, adsorption isotherms, thermodynamics and kinetics of the process were also studied. The results of this study showed that the maximum adsorption capacity ( $q_{max}$ ) of chitin was 116.07 mg/g at a RB-29 concentration of 50 mg/L and contact time of 90 min. In addition, the maximum adsorption was observed at pH = 3 and adsorbent dosage of 0.2 g/L. The experimental data showed that the results were consistent with the Langmuir isotherm model. According to the results of thermodynamic study, standard entropy change  $\Delta S$  is equal to 25.40 J/mol K, standard enthalpy change  $\Delta H$  is equal to 7,054.39 J/mol and standard Gibbs free energy values ( $\Delta G$ ) were negative, that represents a spontaneous and endothermic process of RB-29 adsorption by the extracted chitin. Moreover, adsorption kinetics followed the pseudo-second-order kinetic model. Based on the results of this study it can be concluded that chitin can efficiently remove RB-29 dye from aqueous solutions.

Keywords: Reactive blue 29; Chitin; Adsorption; Isotherms; Thermodynamics; Kinetics

\* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.