Equilibrium and thermodynamics for adsorption of uranium onto potassium hydroxide oxidized carbon

Sobhy M. Ebrahim Yakouta,b, Nafisa A. Salemc,*, Ahmed A. Abdeltawabd,e

aBiochemistry Department, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia, email: sobhy.yakout@gmail.com
bAtomic Energy Authority, Hot Laboratories Centre, 13759, Cairo, Egypt
cMinistry of Higher Education and Scientific Research, Cairo, Egypt, Tel. +201097707151, email: nsalem2030@gmail.com
dChemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia, email: forahmed@yahoo.com
eTabbin Institute for Metallurgical Studies, Cairo, Egypt

Received 20 March 2016; Accepted 16 December 2016

A B S T R A C T

In this study, the potential of KOH-oxidized rice straw-based activated carbon for uranium adsorption from aqueous solution was studied. Effect of different parameters including contact time, initial uranium concentration; initial pH and temperature were studied. Uranium uptake was fast and needed a short time of 40 min. Adsorption isotherms were well fitted by Langmuir model ($R^2 = 0.999$) and Dubinin–Radushkevich (D–R) model ($R^2 = 0.99$) with activation energy values in the energy range of an ion-exchange reaction. A temperature was found to increase the adsorption of uranium from 100 mg/g to 127 mg/g when it was increased from 298K to 328K. Thermodynamic parameters including ΔH°, ΔS°, and ΔG° were calculated, which showed that uranium adsorption was spontaneous, exothermic nature and there is evident of decreasing metal ions randomness at the solid-liquid interface. Findings from the present study showed that potassium hydroxide-modified straw-based carbon can be successfully used for removal of uranium from aqueous solution.

Keywords: Uranium; Adsorption; Isotherm; Thermodynamics; Activated carbon; Surface modification

*Corresponding author.