Photocatalytic degradation of methylene blue dye by F-doped Co$_3$O$_4$ nanowires

Tariq R. Sobahia,*, M.S. Aminb,c, Reda M. Mohameda,d

aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, 21589 Jeddah, Saudi Arabia, emails: tsohabi@gmail.com (T.R. Sobahi), redama123@yahoo.com (R.M. Mohamed)

bDepartment of Basic Sciences and Technology, Community College, Taibah University, Saudi Arabia, email: mohamedsamin@hotmail.com

cChemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

dAdvanced Materials Department, Central Metallurgical R&D Institute, CMRDI, PO Box 87, Helwan, Cairo, Egypt

Received 30 October 2016; Accepted 16 February 2017

Abstract

The hydrothermal method was used to prepare Co$_3$O$_4$ with different shapes by varying concentration of NaOH from 3 to 12 M. Shape of Co$_3$O$_4$ was found to be nanowire by using 9 M NaOH. Fluorine was doped into the surface of Co$_3$O$_4$ nanowire by impregnation method. Doping of fluorine into the surface of Co$_3$O$_4$ nanowire decreases bandgap of Co$_3$O$_4$ nanowire from 2.49 to 2.32 eV as a result of the blocking of some pores of Co$_3$O$_4$ nanowire. The surface area of undoped Co$_3$O$_4$ nanowire is higher than that of doped Co$_3$O$_4$ nanowire. Doping of fluorine into surface of Co$_3$O$_4$ nanowire enhances the photocatalytic performance of Co$_3$O$_4$ nanowire toward degradation of methylene blue dye under visible light.

Keywords: Co$_3$O$_4$; Hydrothermal; Fluorine; Methylene blue dye

* Corresponding author.