

Photocatalytic degradation of methylene blue dye by F-doped Co₃O₄ nanowires

Tariq R. Sobahi^{a,*}, M.S. Amin^{b,c}, Reda M. Mohamed^{a,d}

^aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, 21589 Jeddah, Saudi Arabia, emails: tsohabi@gmail.com (T.R. Sobahi), redama123@yahoo.com (R.M. Mohamed) ^bDepartment of Basic Sciences and Technology, Community College, Taibah University, Saudi Arabia,

email: mohamedsamin@hotmail.com

^cChemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt

^dAdvanced Materials Department, Central Metallurgical R&D Institute, CMRDI, PO Box 87, Helwan, Cairo, Egypt

Received 30 October 2016; Accepted 16 February 2017

ABSTRACT

The hydrothermal method was used to prepare Co_3O_4 with different shapes by varying concentration of NaOH from 3 to 12 M. Shape of Co_3O_4 was found to be nanowire by using 9 M NaOH. Fluorine was doped into the surface of Co_3O_4 nanowire by impregnation method. Doping of fluorine into the surface of Co_3O_4 nanowire decreases bandgap of Co_3O_4 nanowire from 2.49 to 2.32 eV as a result of the blocking of some pores of Co_3O_4 nanowire. The surface area of undoped Co_3O_4 nanowire is higher than that of doped Co_3O_4 nanowire. Doping of fluorine into surface of Co_3O_4 nanowire enhances the photocatalytic performance of Co_3O_4 nanowire toward degradation of methylene blue dye under visible light.

Keywords: Co₃O₄; Hydrothermal; Fluorine; Methylene blue dye

* Corresponding author.