Biomethanation and anaerobic co-digestion via microbial communities of microalgal *Hydrodictyon reticulatum* biomass residues with sewage sludge

Jangwoo Lee\(^a\), Kwanyong Lee\(^b\), Hyun Min Jang\(^a\), Jingyeong Shin\(^a\), Ki Young Park\(^b\), Jinwoo Cho\(^c\), Young Mo Kim\(^a\).*

\(^a\)School of Earth Sciences and Environmental Engineering, Gwang-ju Institute of Science and Technology (GIST), Buk-gu, Gwang-ju 61005, Korea, email: youngmo@gist.ac.kr

\(^b\)Department of Civil and Environmental System Engineering, Konkuk University, Gwangjin-gu, Seoul 143-701, Korea

\(^c\)Department of Environment and Energy, Sejong University, Gwangjin-Gu, Seoul 143-747, Korea

Received 14 November 2016; Accepted 6 January 2017

Abstract

The performance of co-digestion via the combination of microalgae residues and wasted activated sludge (WAS) was evaluated in batch and semi-continuous type anaerobic digestion (AD) reactors. Simultaneously, AD with WAS alone (R\(_1\)) and with the combination of raw microalgae and WAS (R\(_2\)) were conducted, respectively. In batch tests, compared with R\(_1\) (344 mL-CH\(_4\)/g-VS), co-digestion of WAS with microalgae residues (R\(_3\)) achieved 40% higher methane yield (498 mL-CH\(_4\)/g-VS), while R\(_2\) exhibited the lowest value of 148 mL-CH\(_4\)/g-VS. The semi-continuous type R\(_3\) digester reduced higher volatile solids (VS; 39%) at an organic loading rate of 1.0 kg-VS/m\(^3\)d, producing the methane yield of 292 mL/g-VS d. The R\(_3\) semi-continuous type digester had the highest concentrations of both total bacteria and archaea, showing a ratio of 1:1 among hydrogenotrophic and acetoclastic methanogens. The bacterial community was characterized as existence of the *Lactobacillus* genus as well as fermentative bacteria belonging to the *Clostridia* class syntrophically associated with hydrogenotrophic methanogens.

Keywords: Anaerobic co-digestion; Microalgae residues; Wasted activated sludge; Biogas; Microbial community