High-efficient capture of C.I. Basic Blue 3 by carboxymethyl-β-cyclodextrin conjugated magnetic composite

Baowei Hua,*, Qingyuan Hub, Jun Huc,d, Chengguang Chenb

aSchool of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China, Tel./Fax: +86-575-88341820; emails: baoweihusxu@sina.cn, hbw@usx.edu.cn
bDepartment of Architectural Engineering for Shaoxing University Yuanpei College, Shaoxing 312000, China, emails: qingyuanhusxu@sina.cn (Q. Hu), chengguanchensxu@163.com (C. Chen)
cSchool of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China, email: junhudongguan@126.com
dNAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Received 1 November 2016; Accepted 2 May 2017

\textbf{A B S T R A C T}

In the present study, carboxymethyl-β-cyclodextrin (CM-CD) molecules were introduced onto the surfaces of Fe\textsubscript{3}O\textsubscript{4} nanoparticles via chemical co-precipitation approach. The synthesized Fe\textsubscript{3}O\textsubscript{4}/CM-CD composite exhibited high magnetism and could be easily separated from the aqueous phase by exposing to an external magnetic field. In addition, the composite was stable in solution over a wide pH range. The effects of contact time, solution pH, ionic strength, solid dosage and temperature on the removal performance of Fe\textsubscript{3}O\textsubscript{4}/CM-CD toward a cationic dye named C.I. Basic Blue 3 (BB3) were evaluated by using the batch technique. The sorption kinetic process achieved equilibrium within a contact time of 90 min. The sorption isotherm data were simulated by the Langmuir model well and the maximum sorption capacity was calculated to be 203.54 mg/g at 298 K. The Fe\textsubscript{3}O\textsubscript{4}/CM-CD composite exhibited favorable removal performance toward BB3 in both the single-solute system and the simulation effluent. After sorption equilibrium, the BB3-loaded composite could be easily regenerated and reused for multiple sorption/desorption cycles. The experimental findings herein proposed the feasibility of adopting Fe\textsubscript{3}O\textsubscript{4}/CM-CD composite for the decontamination of BB3 from the polluted water systems.

\textit{Keywords:} Fe\textsubscript{3}O\textsubscript{4}/CM-CD composite; C.I. Basic Blue 3; Simulation effluent; Magnetic separation; Renewable performance

* Corresponding author.