Mixture of illite-kaolinite for efficient water purification:
Removal of As(III) from aqueous solutions

Omer Sakin Omer a,b, Belal H.M. Hussein a,c, Mohammed Ali Hussein b, Arbi Mgaidi a,*

 a Chemistry Department, Faculty of Sciences and Arts, Al Ula Branch, Taibah University, Saudi Arabia, Tel. +966595241830, email: onsakin@gmail.com (O.S. Omer), Tel. +9665327705025, email: Belalhussein102@yahoo.com (B.H.M. Hussein), Tel. +966546834407, email: amgaidi@taibahu.edu.sa (A. Mgaidi)
 b Department of Industrial and Applied Chemistry, Faculty of Pure and Applied Science, International University of Africa, Sudan, Tel. +249912211641, email: moalhu01@gmail.com (M.A. Hussein)
 c Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt

Received 6 December 2016; Accepted 10 April 2017

ABSTRACT

Adsorption technology is one of the most promising technologies to remove heavy metals from water. This paper aims to remove arsenite As(III) from contaminated water using a less costly, easier to handle and efficient absorbent. Purified natural clay was characterized and tested as an adsorbent. Mineralogical and textural analysis showed that this adsorbent is a non-swelling clay mineral (illite + kaolinite) and a mesoporous material with specific surface area \(S_{\text{BET}} = 128 \text{ m}^2\cdot\text{g}^{-1} \). A series of batch tests were performed as a function of contact time (10–180 min), temperature (25–55°C), initial As(III) concentration (20–100 mg·L⁻¹) and solid/liquid ratio (5–25 g·L⁻¹). The adsorption equilibrium studies revealed that Freundlich isotherm was followed with a better correlation than the Langmuir isotherm, moreover, it was intra particle diffusion controlled. The adsorption of As(III) onto the mixture illite-kaolinite was significant in the pH range 9–10.8 with a maximum adsorption capacity \(q_{\text{max}} = 233.1 \text{ mg·g}^{-1} \). At 298 K, the thermodynamic investigation indicates that the adsorption processes is spontaneous \(\Delta G^{\circ}_{\text{ads}} = -9.3 \text{ kJ·mol}^{-1} \) and exothermic \(\Delta H^{\circ}_{\text{ads}} = -4.58 \text{ kJ·mol}^{-1} \). The \(\Delta S^{\circ}_{\text{ads}} \) parameter was found to be +15.8 J·mol⁻¹·K⁻¹ meaning an increase in the randomness of the processes at the surface of clay particles.

Keywords: Illite/kaolinite clay minerals; Arsenite adsorption; Freundlich and Langmuir models; Intra particle diffusion; Thermodynamics

*Corresponding author.