Enhanced photocatalytic activity of N-doped TiO$_2$ deposited on carbon fibers

Xili Shanga, Zhenyu Lib,*, Meiling Liub, Changhai Lia,b,*

aDepartment of Chemical Engineering, Binzhou University, Binzhou 256603, China, Tel./Fax: +86 0543 3190097; emails: lichanghai2000@163.com (C. Li), xilishang@126.com (X. Shang)

bSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, China, emails: cclzy2001@163.com (Z. Li), liumlmail@163.com (M. Liu)

Received 15 March 2016; Accepted 13 May 2017

Abstract

N-doped TiO$_2$ were successfully deposited on the surface of carbon fibers (CFs) by the sol–gel method. The synthesized samples show much higher adsorption capacity and photocatalytic activity for the degradation of Rhodamine B than the pure TiO$_2$ under visible light irradiation. The doped N can further enhance the photocatalytic activity of TiO$_2$ due to the significant synergistic effect between TiO$_2$ and N, which can introduce intermediate level between the conduction band and valence band of TiO$_2$, thus decreasing the band gap values effectively. Moreover, the deposition of doped TiO$_2$ on CFs can promote the transfer and separation of photoproduction carriers, improving the adsorption capability of the catalyst and facilitating the recovery of catalyst. Meanwhile photocatalytic activity of the catalyst is reproducible which demonstrates excellent stability and recyclability factors, which are crucial for practical application.

Keywords: Doped; TiO$_2$; Carbon fiber; Photocatalytic

* Corresponding author.