

Gasoline absorption performance of a polymer material

Jun Chen^{a,b}, Xiang Yang Shen^c, Ke Wu^{b,d,*}, Cui Qin Yin^b, Juan Ci^b, Xin Lai Wei^{a,b}, Zhi Min Yu^{a,b}, Jie Jin^{a,b,*}

^aDepartment of Biological and Environmental Engineering, Hefei University, Hefei 230601, China, Tel. +86 551 62158406; Fax: +86 551 62158406; email: chenjun@hfuu.edu.cn

^bAnhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei 230601, China, emails: wuke@hfuu.edu.cn (K. Wu), amushui@hfuu.edu.cn (J. Jin), yincuiqin@qq.com (C.Q. Yin), 1070021123@qq.com (J. Ci), weixinlai@hfuu.edu.cn (X.L. Wei), yuzhiming@hfuu.edu.cn (Z.M. Yu)

^cAnhui Cheng Fang New Material Technology Co., Ltd., Hefei 231606, China, email: tiger.shen@gmail.com

^dCollaborative Innovation Center for Environmental Pollution Control and Ecological Restoration of Anhui Province, Hefei 230601, China

Received 28 September 2016; Accepted 2 July 2017

ABSTRACT

Oil spills leak dangerous chemicals into the environment, causing serious environmental pollution and damaging human health. Thus, environmentally friendly materials for remediation are urgently needed. In this study, a polymer absorbing material (PAM) with a high retention capacity (>90% at a centrifuge rate of 3,000 rpm) and high absorption capacity (7.5 g gasoline/g of PAM) was described. The pseudo-second-order absorption kinetic model was shown to accurately simulate the absorption data. The results showed that the PAM had a spherical structure and abundant functional groups. The PAM absorbed almost all of the tested liquid chemicals, including gasoline, crude oil, diesel, and kerosene. In contrast to traditional oil-absorbing materials, the high oil-retention capacity of this material prevented the volatilization of chemicals dangerous to human health and the environment. Consequently, the PAM was suitable for applications in oil-spill treatment, especially in the emergency handling of toxic and harmful substances.

Keywords: Polymer absorbing materials; Oil-retention capacity; Stable performance

^{*} Corresponding author.