Visible light driven photocatalysis for water purification by highly crystalline multiferroic BiFeO₃ nanoparticles synthesized via wet chemical route

Sajjad Ahmad a, Fizza Naseem a, Muhammad Shahid a, Imran Shahir b, Mohamed F.A. Aboud b, Mansoor Sarfraz b, Muhammad Azhar Khan c, Aziz Ur Rehman a, Muhammad Farooq Warsi a, *

a Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, Tel. +92 300 6342261; Fax: +92 62 9255474; emails: farooq.warsi@iub.edu.pk (M.F. Warsi), chsajjadahmad@hotmail.com (S. Ahmad), fizza915@gmail.com (F. Naseem), shahid@iub.edu.pk (M. Shahid), azizypk@yahoo.com (A.U. Rehman)
b Sustainable Energy Technologies Center, College of Engineering, King Saud University, Riyadh, Saudi Arabia, emails: imranskku@gmail.com (I. Shahir), maboud@ksu.edu.sa (M.F.A. Aboud), smansoor@ksu.edu.sa (M. Sarfraz)
c Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, email: azhar.khan@iub.edu.pk

Received 19 January 2017; Accepted 23 July 2017

ABSTRACT

BiFeO₃ (BFO) multiferroics were synthesized via a low-cost wet chemical method. The enigma involved the optimization of different reaction conditions. A comprehensive study was carried out to optimize the reaction conditions such as molar ratios of surfactant with total concentration of precursors, chemical source and solubility of precursors and annealing temperature. A pragmatic nucleation of precursors was achieved at molar proportions 1:1 between cetyltrimethylammonium bromide (CTAB) and total molar concentration of precursors. An endeavor approach was made to accomplish the appropriate flexibility of emulsion phase by adding small quantity of ethanol as a co-surfactant, nevertheless the solubility of Bi(NO₃)₃/BiCl₃ was unfavorably affected. Subsequently, the single phase product of BFO was observed with reaction conditions 1:1 molar concentration ratio between precursors and CTAB, with precursors BiCl₃ and Fe(NO₃).9H₂O and annealing temperature of 900°C for a time of 7 h. The structural elucidation was made by comparing the extracted data with standard cards (ICDD - 01-086-1518) of XRD. The crystallite size was computed to be 18 nm. The DC conductivity was found to be 1.005 × 10⁻⁹ S cm⁻¹. The optical band gap was found in the range of ~2.6 eV. Keeping in view the optical band gap, BFO nanoparticles were investigated for photocatalytic degradation of Congo Red dye under visible light. The photocatalytic degraded sample was investigated through the high-performance liquid chromatography (HPLC) and chemical oxygen demand estimation (COD value) for treated sample was calculated to be 63.27% which is less than the untreated sample which disclosed a photodegradation of Congo Red dye into simple hydrocarbon products as perceived in HPLC–chromatogram. The post XRD data showed the stability of BFO which could be separated through a simple bar magnet from reaction container.

Keywords: Visible light; Photocatalysis; Nanoparticles; Micro-emulsion

* Corresponding author.