Effect of aeration rate on the performance of a novel nonwoven flat plate bioreactor

S.A. García-González*, A. Durán-Moreno

Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, Distrito Federal, CP 04510, México, Tel. +52 5556225293/Fax: +52 5556225303, emails: cheko29@hotmail.com (S.A. García-González), alfdur@unam.mx (A. Durán-Moreno)

Received 20 December 2016; Accepted 29 July 2017

ABSTRACT

The aim of this work was to evaluate the effect of aeration rate (U_a) on the performance of a novel nonwoven flat plate bioreactor. Increase in U_a, ranging from 0.080 to 0.129 m/s, resulted in the increase of the apparent substrate consumption rate (8.38–11.86 mg/L h) and decrease in mixing time (from 13 to 7 min), thereby positively affecting the oxygen (kLa) and external (k_c) mass transfer. Biofilm detachment was less than 1% despite the fact that shear stress value was 1.12 Pa at the highest airflow rate. The system could treat a superficial organic loading from 13.54 up to 50 g phenol/m² d with almost 100% phenol removal.

Keywords: Biofilm detachment, flat plate bioreactor, nonwoven fibrous support

* Corresponding author.

Presented at the 13th IWA Specialized Conference on Small Water and Wastewater Systems & 5th IWA Specialized Conference on Resources-Oriented Sanitation, 14–16 September, 2016, Athens, Greece.