Adsorption of anionic azo dye Congo Red from aqueous solution onto NaOH-modified jute fibre

Amit Kumar Deya,\textdagger, Upendra Kumarb

aDepartment of Civil Engineering, Central Institute of Technology, Kokrajhar 783370, India, email: ak.dey@cit.ac.in
bDepartment of Civil Engineering, National Institute of Technology, Silchar 788010, India

Received 11 May 2017; Accepted 22 September 2017

\textbf{ABSTRACT}

Adsorption of Congo red onto NaOH-modified jute fibre was studied for different concentrations of dye solutions (50, 100, 150 and 200 mg/L). Experiments were carried out as function of contact time, initial solution pH (3–9), adsorbent dose (10–20 g/L) and temperature (293, 303 and 313 K). Adsorption data fit better to Langmuir model in comparison with the Freundlich model. This indicates the mono-layer adsorption on the homogeneous surface of the adsorbent with identical binding sites of the adsorbent. The adsorption process followed the pseudo-second-order kinetic model. The maximum sorption capacity (q_{max}) was found to be 32.24 mg/g. The maximum adsorption occurred at pH 7.0. The effect of adsorption dose was studied and optimum adsorption was obtained at a jute dose of 16 g/L.

\textit{Keywords:} Adsorption; NaOH-modified jute fibre; Congo Red; Isotherm; Equilibrium studies; Pseudo-first-order; Pseudo-second-order

\dagger Corresponding author.