Fe$_3$O$_4$ and Fe$_3$O$_4$/Fe$^{2+}$/Fe0 catalyzed Fenton-like process for advanced treatment of pharmaceutical wastewater

Nan Zhang, Guangming Zhang*, Ting Huang, Shan Chong, Yucan Liu

School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China, Tel. +86-10-82502680, email: zhangnan0923@163.com (N. Zhang), zgm@ruc.edu.cn (G. Zhang), Jason_huangting@163.com (T. Huang), chongshan@ruc.edu.cn (S. Chong), lyucan@163.com (Y. Liu)

Received 9 June 2017; Accepted 18 September 2017

ABSTRACT

Batch experiments were conducted for advanced treatment of pharmaceutical wastewater (after biological treatment) in a series of Fenton-like systems. Fe$_3$O$_4$-H$_2$O$_2$ system had the highest reactivity for COD removal comparing to classic Fenton and Fe$_0$-H$_2$O$_2$ systems. Effects of crucial experimental factors were investigated, including H$_2$O$_2$ and Fe$_3$O$_4$ dosage, pH, and reaction time. To reach 20% COD removal, the optimal conditions were pH of 3.0, Fe$_3$O$_4$ dosage of 1.0 g/L, and H$_2$O$_2$ dosage of 10 mg/L. Comparing with the classical Fenton’s reaction, the Fe$_3$O$_4$-H$_2$O$_2$ system saved 75% H$_2$O$_2$, reduced 47% excess sludge, and slightly improved the COD removal. Furthermore, in order to meet the upcoming new local standard, Fe$^{2+}$ and Fe0 were introduced into Fe$_3$O$_4$-H$_2$O$_2$ system to form a hybrid system, Fe$_3$O$_4$/Fe$^{2+}$/Fe0-H$_2$O$_2$ (pH of 3.0, Fe$_3$O$_4$ of 1.0 g/L, Fe$^{2+}$ of 0.23 g/L, Fe0 of 34 mg/L, and H$_2$O$_2$ of 40 mg/L). Fe0 and Fe$^{2+}$ not only improved the COD removal and decreased iron sludge, but also enhanced the reuse of catalysts. Compared to the classic Fenton process, 80% H$_2$O$_2$ dosage was saved and 94% iron sludge was decreased. Meanwhile, the cost decrease by 1.66 RMB/m3-wastewater.

Keywords: Fe$_3$O$_4$; Fe$^{2+}$; Pharmaceutical wastewater; Heterogeneous Fenton-like process

*Corresponding author.