Effects of TiO$_2$ on the laccase enzyme immobilization and the bisphenol-A removal of the ceramic membranes

Samunya Sanguanpaka,*, Witaya Shongkittikula, Anucha Wannagona, Chart Chiemchaisrib

aNational Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Pahonyothin Rd., Klong Luang, Pathumthani 12120, Thailand, Tel. +66-256-46500, Fax +66-256-46368, email: samunys@mtec.or.th (S. Sanguanpak), wityatas@mtec.or.th (W. Shongkittikul), anuchaw@mtec.or.th (A. Wannagon)

bDepartment of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand, email: fengccc@ku.ac.th

Received 10 January 2017; Accepted 1 October 2017

ABSTRACT

This research investigates the effects of titanium dioxide (TiO$_2$) on the laccase enzyme immobilization and the BPA removal performance of the ceramic membranes. There were four types of experimental ceramic membranes: the ceramic membrane, TiO$_2$-coated membrane, laccase-immobilized membrane, and laccase-immobilized TiO$_2$-coated membrane. The laccase concentrations were varied between 0, 500, 2500 and 5000 U L$^{-1}$. The experimental results revealed that TiO$_2$ improved the laccase immobilization as TiO$_2$ increased the membrane surface area, formed the mesoporous structure and induced the stronger binding between the membrane surface and the enzyme. Moreover, the laccase-immobilized TiO$_2$-coated membrane with 5000 U L$^{-1}$ laccase concentration achieved the highest BPA removal efficiency of 93%. The TiO$_2$-coated membrane could achieve a higher BPA removal efficiency (31%) than the ceramic membrane (9%) and the 500 U L$^{-1}$ laccase-immobilized membrane (20%). The finding was attributable to the improved degradation of organic pollutants as a result of higher photocatalytic performance under visible light and the enhanced organic-pollutants adsorption capacity of the TiO$_2$-coated membrane.

*Corresponding author.

Keywords: Ceramic membranes; TiO$_2$; Laccase enzyme; Bisphenol-A removal