Application of response surface methodology (RSM) for optimization of strontium sorption by synthetic PPy/perlite nanocomposite

Hossein Esfandiana, Ahmad Akramib*,, Fatemeh Bagheban Shahrib

aFaculty of Chemical Engineering, Gas and Petroleum, Semnan University, Semnan, Iran
bDepartment of Chemistry, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
email: aahmad.akramii@gmail.com (A. Akrami)

Received 30 May 2017; Accepted 22 September 2017

A B S T R A C T

The aim of this study is to examine the possibility of strontium (Sr) removal from aqueous solution in batch process by synthesized functional polypyrrol/perlite nanocomposite (PPy/Perlite). Thermophor and functional groups of the nanocomposites were characterized by scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR). Response surface methodology (RSM) was used to optimize the strontium removal efficiency (%) with three experimental factors using central composite design (CCD). The optimum pH, contact time and amount of adsorbent were 5.12, 28.41 min and 0.23 g, respectively. The maximum removal efficiency of strontium in batch administrations was 97.10%.

Keywords: Strontium; Nanocomposite; Adsorption; RSM; Central composite design; Optimization