Adsorption of non-steroidal anti-inflammatory drugs (diclofenac and ibuprofen) from aqueous medium onto activated onion skin

Ghulam Abbasa, Iqbal Javeda, Munawar Iqbalb,*, Rizwan Haiderc, Fida Hussaind,e,f,g, Naseem Qureshib

aDepartment of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
bDepartment of Chemistry, The University of Lahore, Lahore, Pakistan, email: bosolve@yahoo.com (M. Iqbal)
cDepartment of Botany, Quaid-i-Azam University, Islamabad, Pakistan
dDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
eSchool of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330000, China
fKey Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330000, China
gDepartment of Botany, Islamia College, Peshawar 25100, Pakistan
hDepartment of Chemistry, Karakoram International University, Gilgit 15100, Pakistan

Received 28 December 2016; Accepted 10 September 2017

\textbf{A B S T R A C T}

Diclofenac (DCF) and ibuprofen (IBP) adsorption onto acids (HCl, H\textsubscript{2}SO\textsubscript{4}, and H\textsubscript{3}PO\textsubscript{4}) pre-treated onion skin (OS) was studied as a function of pH, adsorbent dosage, drugs initial concentrations and contact time. The H\textsubscript{2}SO\textsubscript{4}-OS (adsorbent) showed higher drugs adsorption efficiency followed by H\textsubscript{3}PO\textsubscript{4}-OS and HCl-OS and NAT-OS (native). The drugs loaded and un-loaded OS were characterized by energy dispersive X-ray and scanning electron microscope techniques, which revealed a considerable change in OS composition and changed surface morphology. Pseudo-second-order kinetic model fitted well to both the drugs adsorption data. Freundlich isotherm explained well the drugs adsorption onto OS adsorbents. The optimum conditions of pH, adsorbent dosage and contact time were 6.5, 0.05 mg/g and 220 min, respectively. At optimum condition, the DCF and IBP adsorptions were 134.003 and 91.99 mg/g, respectively, which were 81.90\% and 65.99\% removal of the initial concentrations. Results revealed that OS pre-treated with mineral acids is a potential adsorbent and could possibly be used for the remediation of drugs wastewater.

\textit{Keywords:} Onion skin; Mineral acid pre-treatments; Anti-inflammatory drugs; Surface morphology; Elemental composition

* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.