

Preparation and characterization of mesoporous silica (Ms) supporting lanthanum carbonate (Ms-La) for the defluorination of aqueous solutions

Rui Wang^{a,+}, Lijun Luo^{a,+}, Yong JunYang^a, Li Shu^b, Veeriah Jegatheesan^b, Hongbin Wang^{a,*}, Min Yang^{a,*}

^aSchool of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, China, emails: 595530820@qq.com (H.B. Wang), 826677468@qq.com (M. Yang), 392639402@qq.com (R. Wang), 10501931@qq.com (L. Luo), 1060656032@qq.com (Y.J. Yang) ^bSchool of Engineering, RMIT University, Melbourne, Victoria 3000, Australia, emails: li.shu@rmit.edu.au (L. Shu), jega.jegatheesan@rmit.edu.au (V. Jegatheesan)

Received 24 June 2017; Accepted 9 September 2017

ABSTRACT

In this paper, the mesoporous silica (denoted as Ms) was modified by lanthanum and the optimal preparation conditions were investigated for lanthanum loaded mesoporous silica materials (denoted as Ms-La). The Ms-La material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis-differential temperature analysis (TG-DTA). The results show that lanthanum is successfully loaded onto the surface of the Ms, and the structure of the Ms did not change during the loading process. The Ms-La had good defluorination performance due to its large surface area and good dispersive effect. The defluorination by the Ms-La can reach 81% before optimization and can reach 90% under optimum conditions (nNaHCO₃/nLa = 3.0, nLa/nSi = 0.08 and 90°C drying temperature). The results of isotherm experiments showed that the maximum adsorption capacity was 19.85 mg/g, and the adsorption was in accordance with Langmuir isotherm adsorption model and the adsorption process was mainly based on the replacement of CO₃²⁻ from La₂(CO₃)₃ by F⁻ to form La(CO₃)F.

Keywords: Mesoporous silica; Lanthanum carbonate; Fluoride removal

* Corresponding author.

1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.

⁺Authors contributed equally to this work.

Presented at the 9th International Conference on Challenges in Environmental Science & Engineering (CESE-2016), 6–10 November 2016, Kaohsiung, Taiwan, 2016