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a b s t r a c t
Phosphate, which can cause eutrophication of the aquatic environment, can be effectively removed 
by an adsorption process using calcium-containing adsorbents. In this study, Ca-carbon foam was 
prepared by a simple method that entailed addition of Ca during the manufacturing process of car-
bon foam, and the phosphate removal characteristics of the prepared foam were analyzed using 
kinetic, equilibrium isotherm, and artificial neural network (ANN) models. The phosphate adsorp-
tion capacity decreased with an increase in the solution pH from 3.05 to 6.99. Furthermore, phosphate 
adsorption increased with increasing time, and the kinetic data were found to be well described by a 
pseudo- second-order model. The Freundlich isotherm provided the best fit of the equilibrium data, 
which indicates multilayer adsorption of phosphate on the Ca-carbon foam. The phosphate adsorp-
tion capacity as a function of three operational parameters—solution pH, initial phosphate concen-
tration, and time—was well predicted by an ANN model (R2 > 0.993), and the optimal ANN for the 
process of phosphate adsorption on Ca-carbon foam had a 3–20–1 structure with 20 hidden layers. 
The solution pH was the most influential operational parameter out of all the examined parame-
ters. The results of these analyses are expected to be useful in designing the process of phosphate 
adsorption from aqueous solutions.

Keywords:  Phosphate; Carbon foam; Kinetic adsorption model; Equilibrium isotherm; Artificial neural 
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1. Introduction

Phosphorus is an essential nutrient for plant growth; 
however, its presence in excessive amounts in the aquatic 
environment is a cause of concern because it can induce 
eutrophication of water bodies [1,2]. Therefore, various phys-
ical, chemical, and biological methods have been applied to 

reduce the phosphorus concentration of effluents prior to 
discharge [3]. In particular, adsorption is the most effective 
and widely used technique for removal of phosphorus from 
water because of its simple concept, convenient implemen-
tation, and low cost [4]. In recent years, several research-
ers have reported stable and enhanced phosphate removal 
performance of calcium-modified adsorbents [5,6]. In fact, 
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calcium has been widely used as a way to remove phospho-
rus through calcium-phosphate precipitation due to its low 
cost. Thus, functionalization of the adsorbent using calcium 
can be a way to increase its ability to remove phosphate [6].

Carbon foam is a sponge-like carbon material that has 
a large surface area because of its open cell structure [7]. 
On account of its excellent strength and thermal and electri-
cal properties, it has been employed for various purposes, for 
example, as a refractory insulation material, filter for corro-
sive chemicals, porous electrode, and acoustic absorber [8,9]. 
Carbon foam can be easily manufactured by an inexpensive 
method, that is, carbonization of phenolic foam [10,11], and 
it can be easily modified by adjusting the additives during 
its preparation process. Lee et al. [12] modified carbon 
foam with Fe2O3 to remove chromium, copper, and nickel 
from industrial plating wastewater. Similarly, although cal-
cium-containing carbon foam can be easily manufactured, 
there has been no study using it to remove phosphorus from 
aqueous solution.

Two basic components of the adsorption process—
equilibrium and kinetics—must be analyzed in order to 
understand this process clearly. Equilibrium provides an 
understanding of adsorption capacity, whereas kinetics pro-
vides insight into possible pathways of an adsorption [13,14]. 
A number of theoretical models and equations have been 
used for this purpose, and the best fit of experimental data 
has been interpreted to provide appropriate information on 
the adsorption process through design parameters [15,16]. 
These parameters are important in designing an actual 
adsorption treatment plant to remove different contami-
nants from water [14,15,17]. Furthermore, in recent years, 
artificial neural network (ANN) models have been used to 
predict the outcome of the adsorption process with reason-
able certainty and speed [18]. An ANN is a computer sim-
ulation technique that essentially mimics the human brain, 
and it is used to identify complex input–output relationships 
and predict results from input data [19]. Several researchers 
have applied the ANN model to predict the results of vari-
ous adsorption studies, such as phosphorus adsorption on 
red mud and phenol adsorption on carbon-based adsorbents 
[20,21]. In addition, the importance of different operational 
parameters was quantified [20].

Therefore, in this study, the characteristics of phosphate 
adsorption on Ca-carbon foam were analyzed using kinetic, 
equilibrium isotherm, and ANN models. The adsorption of 
phosphate was tested under different operational parameters, 
that is, solution pH, time, and initial phosphate concentra-
tion. Pseudo-first-order, pseudo-second-order, and Elovich 
models were used for kinetic data analysis. Furthermore, the 

Freundlich, Langmuir, and Redlich–Peterson isotherms were 
employed for equilibrium data analysis. Finally, the relative 
importance of the different operational parameters for phos-
phate adsorption on Ca-carbon foam was predicted by the 
ANN model.

2. Materials and methods

2.1. Materials

Potassium dihydrogen phosphate (KH2PO4) was used to 
prepare a phosphate stock solution (1,000 mg/L as PO4–P). 
Reagent-grade HCl and NaOH were used for pH adjust-
ment of the solution, and ultrapure water (deionized [DI] 
water, 18.2 MΩ/cm) was used for all dilutions and reagent 
preparations.

2.2. Adsorbent

Phenolic resin-based carbon foam was supplied from 
Smithers-Oasis Korea Co. Ltd. and the preparation method 
has been described in detail in previous studies [10,12]. 
Briefly, the phenolic resin (1.0 kg) was synthesized in a lab-
oratory via compounding of formaldehyde (1.5 kg) and a 
base catalyst (40 g). The mixture was neutralized (pH 6–7) 
using dilute sulfuric acid, and the moisture content (9%) 
was adjusted through dehydration under vacuum. Then, 
an alkyl-ether-type surfactant (2.0 g) was mixed with the 
prepared phenolic resin, and an organic acid curing agent 
(80 g) containing calcium carbonate (100 g) was added to 
the mixture to prepare the Ca-carbon foam. A hydrocarbon 
foaming agent (20 g) was also added to the mixture, and 
the resulting mixture was stirred thoroughly in a mold. 
The synthesized foam was aged in a convection oven. 
Subsequently, the dried phenolic foam was carbonized 
at 900°C under N2 atmosphere [10,12]. The synthesized 
Ca-carbon foam was uniformly pulverized (≈75 µm) using 
mortar prior to the adsorption experiments.

2.3. Adsorption studies

A series of phosphate adsorption experiments were per-
formed under batch conditions to investigate the effects of 
different operational parameters on the adsorption perfor-
mance of the Ca-carbon foam. As listed in Table 1, the solu-
tion pH, time, and initial phosphate concentration were the 
considered operational parameters. The pH experiment was 
performed at solution pH values of 2, 3, 4, 5, 6, and 7. The 
solution pH was adjusted with 1 M HCl and 1 M NaOH. 
Kinetic adsorption tests were conducted for times of 10, 20, 

Table 1
Ranges of operational parameters for ANN analysis

Variable Operational parameter Range

Input layer Solution pH 1.97–6.99
Time, min 10–120
Initial phosphate concentration, mg/L 50–250

Output layer Phosphate adsorption capacity, mg/g 0–54.159
Total number of data points 38
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30, 45, 60, 90, and 120 min by using 100 mg/L (as PO4–P) of 
pH 3 phosphate solution. The effect of the initial phosphate 
concentration on its adsorption was tested using 50, 75, 100, 
150, 200, and 250 mg/L (as PO4–P) phosphate solutions with 
a time of 120 min. The experiments were performed using a 
rotary shaker (MG-150D, Mega Science, Korea) at 25 rpm at 
21°C ± 2°C. The adsorbent dose added to the solution was 
2.5 g/L. After the adsorption, sampling was performed using 
a 0.45 µm filter (Whatman, USA), and the residual phosphate 
concentration as PO4–P was measured using an inductively 
coupled plasma-optical emission spectrometer (Prodigy ICP, 
Teledyne Leeman Labs, USA). The phosphate adsorption 
capacity per unit mass of the adsorbent was calculated as 
follows:

q
C C
a

i f=
−

 (1)

where Ci and Cf are the concentrations of a contaminant in 
the aqueous phase before and after the adsorption (mg/L), 
respectively; and a is the dose of Ca-carbon foam (g/L). 
The pH of the solution was measured using a pH probe 
(8302BNUMD, ORION, USA). All the batch experiments 
were performed in triplicate.

2.4. ANN modeling

Three input parameters—pH, time, and initial phosphate 
concentration—were used for the ANN modeling. The 
nnstart function included in MATLAB R2018b was used to 
implement a three-layer feed-forward network with back- 
propagation learning for the modeling (Fig. 1). This net-
work employed the tan-sigmoid (tansig) transfer function 
for the hidden layer and a linear transfer function (purelin) 
for the output layer. For this network, only one hidden layer 
was used. The Levenberg–Marquardt (trainlm) algorithm 
with 1,000 epochs was selected for training the functions 

for this network. The results of training were expressed in 
one neuron in the output layer as the adsorption capacity. 
The mean squared error (MSE) was used to evaluate the 
performance function of the network.

3. Results and discussion

3.1. Effect of solution pH on phosphate adsorption

The solution pH can significantly affect the adsorption of 
ionic contaminants [18,22]. Both the chemical species of the 
ionic contaminants and the surface charge of the adsorbent 
can change with the solution pH. In particular, the adsorp-
tion of anionic contaminants such as phosphate generally 
decreases as pH increases, on account of increased competi-
tion with hydroxyl ions [23,24]. On the other hand, contami-
nant removal via surface precipitation does not occur under 
low-pH conditions [6,25]. This tendency was also observed 
for the phosphate adsorption on the Ca-carbon foam in this 
study. As shown in Fig. 2a, the adsorption of phosphate 
peaked to 25.25 ± 1.31 mg/g at pH 3.05 and decreased to 
16.79 ± 1.78 mg/g at pH 6.99. Phosphate removal was not 
observed at pH 1.97 due to calcium release from the adsor-
bent in acidic conditions (97.89 ± 2.21 mg/L). From analysis 
using the Visual MINTEQ 3.1 program (Fig. 2b), the mon-
ovalent form of phosphate (H2PO4

–) was found to be the 
dominant species under our experimental conditions. 

3.2. Effects of time and initial phosphate concentration

Time is another important operational parameter in 
designing actual treatment facilities for removal of con-
taminants from water by the adsorption process [26]. The 
adsorption of phosphate on the Ca-carbon foam as a func-
tion of time is shown in Fig. 3a. The phosphate adsorption 
gradually increased with increasing time. The adsorption 
capacity increased from 6.17 ± 0.64 to 24.83 ± 0.01 mg/g with 
an increase in the time from 10 to 120 min. The removal 

Fig. 1. Schematic architecture of (3–20–1) ANN model for adsorption process.
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percentage of phosphate was 62% (initial phosphate concen-
tration: 100 mg/L as PO4–P) for a time of 120 min.

The adsorption capacity of the adsorbent is typically 
determined via experiments with different initial concentra-
tions of the adsorbate [27]. Therefore, the effect of the initial 
phosphate concentration (50–250 mg/L as PO4–P) on phos-
phate adsorption was tested, and the results are shown in 
Fig. 3b. As the initial phosphate concentration increased, the 
phosphate adsorption capacity of the adsorbent increased 
from 19.02 ± 0.03 to 51.53 ± 3.72 mg/g whereas the removal 
percentage decreased from 95% to 52%. This increase in the 
adsorption capacity is due to the increased driving force for 
adsorption at the adsorption site on the adsorbent result-
ing from an increase in the adsorbate concentration [28,29]. 
Similar results were reported for phosphate adsorption 
on Ca-modified biochar and thermally modified Ca-rich 
attapulgite [6,30].

3.3. Adsorption kinetics

The adsorption data shown in Fig. 3a as a function of time 
were analyzed in order to determine the parameters of the 

pseudo-first-order [31] (Eq. (2)), pseudo-second-order [32] 
(Eq. (3)), and Elovich [33] (Eq. (4)) kinetic models:

q q et e
k t= −( )−1 1  (2)

q
k q t
k q tt
e

e

=
+
2

2

21
 (3)

q tt = ( ) + ( )1 1
β

αβ
β

ln ln  (4)

where qt and qe are the adsorbed amounts of phosphate at 
time t and equilibrium time (mg/g), respectively; k1 and 
k2 are the adsorption rate constants of the pseudo-first- 
order (1/min) and pseudo-second-order models (g/mg/
min), respectively; and α and β are the initial adsorption 
rate constant (mg/g/min) and the Elovich adsorption con-
stant (g/mg), respectively. The kinetic model parameters 
that minimize the sum of squared errors (SSE) for a given 
nonlinear equation were obtained using the Solver function 
in Microsoft Excel and are presented in Table 2 along with 
the calculated coefficient (R2) for each model. In addition, 
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ity (initial phosphate concentration: 100 mg/L as PO4–P, time: 
2 h) and (b) distribution of phosphate species (calculated using 
Visual MINTEQ 3.1 program).
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the nonlinear fitting of each model using the calculated 
parameters is shown in Fig. 4 together with the experimental 
data. From the model fittings and calculated parameters, it 
was found that all the kinetic models successfully replicated 
the experimental data, among which the pseudo- second-
order model was most suitable for describing the experi-
mental data (R2 = 0.991, SSE = 2.657). This finding indicates 
that chemisorption is involved in the phosphate adsorp-
tion on the Ca-carbon foam [34]. Meanwhile, the expected 
adsorption capacity for the pseudo-second-order model at 
equilibrium time was 36.405 mg/g, which was higher than 
the expected value for the pseudo-first-order model at 
equilibrium time (26.395 mg/g). In addition, the adsorption 
rate constants of the pseudo-second-order model (k2) could 
be used to calculate the initial adsorption rate constant (h) at 
t → 0 by the following equation:

h k qe= 2
2  (5)

The calculated value of h was 0.598 mg/g/min, which 
was lower than half the value of α (initial adsorption rate 
constant) of the Elovich model (1.399 mg/g/min).

3.4. Adsorption isotherms

Nonlinear forms of the Freundlich [35] (Eq. (6)), Langmuir 
[36] (Eq. (7)), and Redlich–Peterson [37] (Eq. (8)) isotherm 
models were employed to analyze the experimental data 
obtained as a function of the initial phosphate concentration, 
as depicted in Fig. 3b: 

q K Ce F e
n= 1/  (6)

q
Q K C
K Ce

m L e

L e

=
+1

 (7)

q
K C
a Ce
R e

R e
g=

+1
 (8)

where Ce is the equilibrium concentration of phosphate in 
the aqueous solution (mg/L); KF and 1/n are the Freundlich 
constant related to the adsorption capacity (L/g) and the 
adsorption intensity, respectively; Qm and KL are the maxi-
mum adsorption capacity (mg/g) of the Ca-carbon foam and 
the Langmuir constant related to the affinity of the binding 
site (L/mg), respectively; KR and aR are the Redlich–Peterson 
constant related to the adsorption capacity (L/g) and the 
affinity of the binding site (L/mg), respectively; and g is the 
Redlich–Peterson constant related to the adsorption inten-
sity. The parameters of the three nonlinear models were 
obtained using the Solver function in Microsoft Excel and 
are listed in Table 3, and the model fittings are shown in 
Fig. 5. The higher R2 and lower SSE of the Freundlich and 
the Redlich–Peterson isotherms imply that both of these iso-
therms are more suitable than the Langmuir isotherm for 
describing the equilibrium data, which indicate multilayer 
adsorption of phosphate on the Ca-carbon foam [4,38]. As 
shown in Fig. 5, the fittings of the Freundlich and Redlich–
Peterson isotherms coincide with each other, which means 

Table 2
Kinetic adsorption parameters obtained from model fitting to kinetic data

Pseudo-first-order model Pseudo-second-order model Elovich model

qe k1 R2 SSE qe k2 R2 SSE α β R2 SSE

(mg/g) (1/min) (mg/g) (g/mg/min) (mg/g/min) (g/mg)  

26.395 0.020 0.986 5.032 36.405 4.5E-04 0.991 2.657 1.399 0.133 0.972 7.336

Table 3
Equilibrium isotherm parameters obtained from model fitting to equilibrium data

Freundlich Langmuir Redlich–Peterson

KF 1/n R2 SSE Qm KL R2 SSE KR aR KR/aR g R2 SSE

(L/g) (mg/g) (L/mg) (L/g) (L/mg) (mg/g)

2.699 0.614 0.983 11.562 95.273 0.009 0.967 24.739 5330.970 1974.612 2.700 0.386 0.983 11.562
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Fig. 4. Nonlinear fitting of kinetic models to experimental data. 
The model parameters are listed in Table 2.
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that the two equations become identical when KR and aR are 
sufficiently larger than unity [39,40]. Thus, in Table 3, KF cor-
responds well to the value of KR/aR, and 1/n coincides with 
(1–g). A comparison of the Langmuir maximum adsorption 
capacities (Qm) of Ca-containing adsorbents is presented in 
Table 4; it is seen that the phosphate (as PO4–P) adsorption 
capacity of the Ca-carbon foam is comparable with the val-
ues reported in the literature (4.58–203.6 mg/g) [5,6,30,41].

3.5. Predictive modeling using ANN

In order to achieve an optimal network, the number 
of neurons in the hidden layer was set within the range of 
2–20 for performing training. The MSE changed with the 
number of neurons in the hidden layer (Fig. 6). The MSE 
had the lowest value (0.090) when the number of neurons 
in the hidden layer was 20. Thus, the optimal ANN consists 
of an input layer with 3 neurons, a hidden layer with 20 
neurons, and an output layer with 1 neuron, which can be 
expressed as a (3–20–1) ANN model. A total of 38 samples 
were randomly divided to examine the correlation between 
the normalized predicted adsorption capacity and normal-
ized experimental data for training, testing, and validation 
and the correlation between all normalized predicted data 
and all normalized experimental data on the adsorption 
capacity. The ANN used 70% data (26 samples) for training, 
15% data (6 samples) for testing, and 15% data (6 samples) 
for validation and showed a high correlation (R2 > 0.993) 
between the experimental and predicted data (Fig. 7); this 

confirms the applicability of the ANN model with the 
trainlm algorithm to the prediction of phosphate adsorption 
on Ca-carbon foam.

The correlation of the output of the model to its input is 
expressed as follows:

Output purelin LW tansig IW= × × ( ) ( ) ( ){ } +( ) +( )x x x b b1 2 3 1 2; ;   
 (9)

where x(1), x(2), and x(3) are inputs; IW and b1 are the weight 
and bias, respectively, of the hidden layer; and LW and b2 are 
the weight and bias, respectively, of the output layer. The 
weight and bias values obtained for the optimally trained 
ANN are listed in Table 5. Sensitivity analysis was per-
formed in order to estimate the relative importance of each 
input parameter affecting the results; specifically, the relative 
importance was determined by calculating the connection 
weights according to the following equation [42,43]:
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Table 4
Comparison of maximum phosphate (as PO4–P) adsorption capacities (Qm) of different Ca-containing adsorbents

Material
Initial phosphate 
concentration

Phosphate adsorption 
capacity

Reference

(mg/L) (mg/g)

Heated Ca-rich attapulgite 400 5.99 [30]
Ca-imprinted chitosan-supported bentonite 47.67a 4.58a [5]
Ca-modified biochar 136.19a 35.89a [6]
Ca-activated zeolite 16,000 203.6 [41]
Ca-carbon foam 250 95.27 This study

aConverted as phosphate phosphorous (PO4–P).
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Table 5
Weight and bias values of hidden and output layers of optimal ANN model

IW LW b1 b2

3.0027 –1.3674 1.8852 0.54443 –3.8014 –0.79694
–2.5777 –0.74495 –2.7469 0.56306 3.327
–3.0195 –1.6176 1.8843 –0.27793 2.9232
–0.065563 2.3309 2.7944 –0.76163 2.5825
2.9863 1.7666 0.07892 –0.26056 –2.5899
3.0374 –0.44651 2.1286 0.35672 –1.9171

–2.9406 1.1574 –2.1272 0.41977 1.333
0.065565 2.8159 2.2163 –0.60394 –1.3341
2.1278 –1.9392 2.4834 –0.061271 –0.61185
2.62 –1.7328 2.1313 0.13966 –0.32893
2.7153 0.74741 –2.2377 –0.60263 –0.2772
2.2071 2.0299 –2.5081 –0.24661 0.35301
2.8674 2.4882 0.58241 0.92761 0.47403

–2.387 –1.3726 –1.0057 –0.9333 –1.8215
0.29696 –3.8587 –0.034309 0.5235 1.5234

–1.5999 –2.326 2.3051 0.42145 –2.415
3.3798 –1.5288 0.36858 –0.032948 2.3292
2.0671 2.071 2.1742 0.41941 3.2771

–2.8761 –2.2274 –0.061995 –0.62132 –3.4438
2.9647 2.2285 –0.51996 0.26962 3.869
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where V is the relative importance of each input parameter, 
m is the number of neurons in the input layer, h is the number 
of neurons in the output layer, and i is the number of neurons 
in the output layer. The relative importance of each input 
parameter in the ANN model with the trainlm algorithm was 
calculated using Eq. (10). These results revealed that solution 
pH (37%) and time (35%) were the most influential parame-
ters for phosphate adsorption on Ca-carbon foam and that 
the initial phosphate concentration (28%) was less influential 
than these two parameters.

4. Conclusions

Ca-containing carbon foam was prepared by a simple 
method and applied to the removal of phosphate from water, 
and the phosphate adsorption characteristics of the prepared 
foam were analyzed using kinetic, equilibrium isotherm, 
and ANN models. The phosphate adsorption capacity of the 
Ca-containing carbon foam decreased with an increase in 
solution pH from 3.05 to 6.99 and increased with increases in 
the time and initial phosphate concentration up to 120 min 
and 250 mg/L as PO4–P, respectively. The kinetic and equi-
librium data were well described by the pseudo-second- 
order model and the Freundlich isotherm, which indicate 
chemisorption and multilayer adsorption, respectively, are 
involved in phosphate adsorption on Ca-carbon foam. The 
optimal ANN for the solution pH, initial phosphate concen-
tration, and time in the process of phosphate adsorption on 
Ca-carbon foam was determined to have a 3–20–1 structure, 
and among these three parameters, solution pH was found to 
be most influential. The results of these analyses can be used 
to design the process of phosphate adsorption on adsorbents 
for its removal from water.
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