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a b s t r a c t
Carbonization of sludge into biochar as adsorbents in application of wastewater decontamination 
was widely concerned to address the issues of sludge resource utilization and wastewater treatment. 
Herein, sewage sludge was carbonized at various temperatures to obtain biochar (SC) for phosphate 
removal, further being considered as a uranium decontaminant. Batch adsorption experiments were 
conducted to investigate the adsorption kinetics and isotherms of SC to phosphate. Results showed 
that the pseudo-second-order kinetic model and Langmuir model fitted well to the adsorption 
kinetic and isotherm results, respectively. Adsorption of phosphate on the SCs was ascribed to mono-
layer chemical adsorption process. The SC obtained at 800°C (SC-800) had the highest adsorption 
capacity of 13.89 mg/g to K3PO4. The adsorption mechanism was regarded as the mineralization of the 
phosphate with Ca element in the SC to form Ca(H2PO4)2 and CaH2P2O5 crystals. The Ca(H2PO4)2 and 
CaH2P2O5 crystals performed prefer uranium adsorption ability to SC-800. The formation of nano-
flakes confirmed the favorable uranium adsorption due to the presence of Ca(H2PO4)2 and CaH2P2O5 
crystals after phosphate adsorption. Thus, the recovered phosphate on SC-800 could be a promising 
uranium decontaminant.
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1. Introduction

Phosphorus (P) is an indispensable and irreplaceable 
non-renewable resource for human life and industrial pro-
duction [1], while the consumption of phosphorus resource 
in the world is on the rise. At the same time, a large amount 
of phosphorus-containing water is discharged into the water 
environment at present. Once the concentration of phospho-
rus exceeds the phosphorus standard of 0.02 mg/L, it accel-
erates eutrophication of surface water body, which causes 
serious harm to water environment and human health [2]. 
To avoid the crisis of phosphorus resource loss and water 

environment hazard, more attention is being urgently paid 
to the treatment of phosphate wastewater and the recovery 
of phosphorus resource.

Until now, methods such as biological treatment [3], 
chemical precipitation [4], adsorption [5] have been widely 
concerned on P-containing wastewater treatment. Among 
them, biological method requires a large processing struc-
ture and rigorous operation condition while lots of chemical 
sludge are generated from chemical precipitation method. 
Fortunately, adsorption method has attracted much atten-
tion in wastewater decontamination due to its high effi-
ciency, simple operation, and free secondary pollution. More 
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importantly, the resource could be extracted after adsorption, 
which could address the advantages of resource recovery 
from pollutants decontamination. The suitable adsorbent is 
key for adsorption.

A wide variety of adsorbents have been used for phos-
phate removing. Natural minerals (zeolite [6], diatomite [7], 
bentonite [8]), whose main chemical components are metal 
oxides or oxygen-containing functional groups, can be used 
as efficient adsorbents. It is well known that conversion of 
solid waste into adsorbents greatly concerned the issues of 
sustainable development and ecological civilization con-
struction. Industrial wastes (slag [9], red mud [10–12], fly 
ash [13,14]) containing a large amount of metal oxides can 
be converted into adsorbents to address the view of waste 
utilization. Activated carbon [15], usually prepared from 
coal [16], shell [17] and sawdust [18], can be used to adsorb 
phosphate due to its large specific surface area and porous 
structure.

Sludge, as a by-product of wastewater treatment, was 
inevitably generated during wastewater treatment. Disposal 
and treatment of the sludges are widely concerned since 
they are intractable at present due to the large quantities and 
harmful environmental impact. Carbonizing the sludge into 
biochar could greatly reduce the amount of sludge and sta-
bilize the pollutants such as pathogenic bacteria and heavy 
metals in sludge. As early as 1971, the sewage sludge was 
carbonized into biochar to prepare cheap biochar adsorbents 
[19]. Fortunately, pathogenic bacteria were destructed and 
the heavy metals were incorporated into the graphite crys-
tals of SC. Since then, sludge had attracted attention as an 
adsorbent [20]. It is reviewed from literatures that sludge 
derived adsorbents were widely concerned on the treatment 
of volatile organic gas pollutants [21], NOx [22], H2S [23], 
heavy metals [24] and organic pollutants [25], and so on. 
Further activation was required to enhance the BET surface 
area. Whether the sludge carbon without activation could 
be an efficient decontaminant? It was interestingly reported 
that the calcium and iron-modified biochar performed favor-
able ability to phosphate adsorption from aqueous solution 
[26–28]. Since the inorganic elements were concentrated in 
biochar in the presence of microwave-assisted pyrolysis 
[29], the sludge char with concentrated calcium, aluminium 
minerals obtained from carbonization may be promising for 
phosphate adsorption; thus, the phosphate could be recov-
ered and enriched in the sludge char. It is inspiring and 
promising for reuse of the phosphate-enriched sludge char.

Since the uranium-containing wastewater was generated 
increasingly with the rapid development of nuclear indus-
try and the overexploitation of uranium, various nanopar-
ticles were explored for uranium decontamination [30]. 
Interestingly, the hydroxyapatite was reported for uranium 
decontamination in our previous study [31,32]; thus, the 
recovered phosphate was hypothesized to be a decontami-
nant for uranium removing.

In this work, sewage sludge was converted into biochar 
at various carbonization temperatures. The obtained SC is 
hypothesized to be efficient for enriching phosphate, fur-
ther the enriched phosphate could be reused for uranium 
decontamination. The phosphate removal performance was 
studied by isothermal adsorption model and kinetic model. 
The product after phosphate adsorption is analyzed by X-ray 

powder diffractometer (XRD) analysis. More importantly, the 
recovered phosphate was confirmed to be efficient for ura-
nium decontamination, which is important to understand the 
resource utilization of sludge, the treatment of phosphorus 
and uranium-containing wastewater.

2. Materials and methods

2.1. Materials

The dewatered sludge was obtained from the Datansha 
wastewater treatment plant. The sludge was dried and dehyd-
rated at 105°C, then was crushed and sieved through 
100 meshes. Potassium orthophosphate (K3PO4), dipotas-
sium hydrogen phosphate (K2HPO4) and monopotassium 
phosphate (KH2PO4) are analytical grades, being purchased 
from Sigma Chemical Reagent Co., Ltd. K3PO4, K2HPO4 and 
KH2PO4 in a concentration of 1,000 mg/L were prepared as 
stock solution. U (VI) stock solution (C0 = 1,000 mg/L) was 
prepared by dissolving a predetermined mass of uranyl 
nitrate (UO2(NO3)2·6H2O) (GR) in 0.1 mol/L of nitric acid, 
further being diluted to 1 L and a pH of 3.

2.2. Preparation of sludge biochar

40 g of dry sludge powder was placed in the ceramic 
ark. Next, the sample was placed in the quartz glass tube of 
the programmable tubular resistance furnace. The nitrogen 
in a flow of 100 mL/min was involved to sweep the air in 
the quartz tube for 30 min. After that, the tube furnace was 
heated to 500°C, held for 120 min and cooled to room tem-
perature. The sample was washed repeatedly until the pH in 
solution was around 7. Finally, it was filtered, dried, ground, 
and sieved through 100 meshes sieve, being recorded as 
SC-500. Similarly, an appropriate amount of dry sludge 
was carbonized at 600°C, 700°C, 800°C as described above. 
The obtained materials were recorded as SC-600, SC-700, 
SC-800 corresponding to the carbonization temperature.

2.3. Batch adsorption experiments

The resulted SC was put into the PO4
3––P-containing solu-

tion in a dosage of 3 g/L, being placed in a conical flask and 
shaken in a water bath oscillator. At each predetermined time 
interval, the sample was extracted and filtered by 0.45 μm 
filter membrane to remove the adsorbents. The concentration 
of residual phosphate was measured by molybdenum anti-
mony spectrophotometry [33], and the adsorption amount 
of phosphate was calculated by the difference of phosphate 
concentration in solution before and after adsorption. The 
adsorption amounts were calculated by Eq. (1) as follows:

q
C C
m

Vt
t=

−
×0  (1)

where C0 and Ct (mg/L) are phosphate concentration at initial 
and t time, respectively; V is the volume of adsorbate (L); m is 
the mass of adsorbent (g).

For the isotherm study, the adsorbents were added into 
a series of PO4

3––P-containing solutions with various initial 
concentrations (10–200 mg/L) at a dosage of 3 g/L. Afterwards, 
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the flasks were put in a water bath oscillator shaken at 
200 rpm for 240 min. Next, the suspension was taken out 
and filtrated to measure the residual PO4

3––P concentration. 
The SC-800 after K3PO4 adsorption was named as SC-800-
K3PO4. The adsorption capacity (qe, mg/g) at equilibrium was 
calculated by Eq. (2):

q
C C
m

Ve
e=

−
×0  (2)

where C0 and Ce are the initial and equilibrium concentration 
(mg/L); V and m were described above.

In the case of uranium adsorption experiments, first, 
0.01 g of SC-800 and SC-800-K3PO4 were added into a 
series of 10 mL of U (VI) solution in various concentrations. 
Furthermore, they were shaken in a water batch oscillator 
at 30°C and 200 rpm for 1 h to equilibrium. 5 M sodium 
hydroxide and sulfuric acid were used to adjust the solution 
pH value to 3.0. The suspension was filtrated using a glass 
syringe equipped with a 0.45 μm syringe filter to remove the 
solid particles. The residual U (VI) concentration was ana-
lyzed using a uranium photo-electric meter (WGJ-III, DAJI 
photo-electric Co., Hangzhou, China). The adsorption capac-
ity was calculated as described above.

All the adsorption experiments were repeated three 
times. The average value of each experiment and error was 
calculated.

2.4. Analytical methods

The BET specific surface area of the biochar was deter-
mined by using a physisorption apparatus (SA 3100, 
Beckman Coulter, USA). The samples were subjected to infra-
red spectrum analysis using a Fourier transform infrared 
spectrometer (FTIR, Tensor27, Bruker, Germany). The phase 
of the sample before and after adsorption was analyzed by 
an XRD (PW3040/60, Holland).

3. Results and discussion

3.1. Characterization of SC

Table 1 presents the XRF analysis of sludge. Obviously, 
aluminium, silica, calcium and iron-containing minerals were 
presented in the sludge. These minerals may be in favor of 

phosphate adsorption because the calcium decorated sludge 
carbon accelerated the phosphate adsorption [27]. Thus, the 
calcium was concentrated after carbonization. The calci-
um-containing mineral may favor the phosphate adsorption.

The specific surface area is one of the important factors 
affecting the adsorption ability of biochar. Table 2 shows 
that the specific surface areas of SC-500, SC-600, SC-700 and 
SC-800 increased with the increase in carbonization tem-
perature, which were 20.65, 70.89, 124.32 and 132.56 m2/g, 
respectively. It suggested that the carbonization temperature 
played a positive effect on increasing the specific surface area 
of biochar due to the release of volatile organic gas during 
carbonization process [34]. The results were confirmed by the 
SEM analysis as shown in Fig. 1. More cracks were observed 

Table 1
Element content in the sludge and SC-800 analyzed by XRF 
(mass %)

Sample Sludge

Mg 1.32
Al 13.5
Si 25.2
P 6.62
S 2.83
K 3.24
Ca 8.01
Ti 5.04
Cr 1.54
Mn 1.00
Fe 28.9

SC-700 SC-600 SC-800 

Fig. 1. SEM analysis of the SC-600, SC-700 and SC-800.

Table 2
Effect of carbonized temperature on the surface area of the 
biochar (m2/g)

Adsorbent BET (m2/g)

SC-500 20.65
SC-600 70.89
SC-700 124.32
SC-800 132.56
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on the surfaces of SC-700 and SC-800 comparing with that 
on SC-600. In addition, the difference in specific surface 
area between SC-700 and SC-800 is indistinguishable. The 
result could be explained by the fact that release of organic 
volatile was similar during carbonization at 700°C and 800°C.

3.2. Phosphate adsorption studies

A yellow substance was observed in the solution when 
the SC-500 was conducted as adsorbent for P removal, indi-
cating that sludge carbonization at 500°C is insufficient and 
its properties are unstable. In this case, SC-500 will not be 
used in the subsequent adsorption experiments. Fortunately, 
the yellow substance was not observed for SC-600, SC-700 
and SC-800, adsorption of P on them were investigated in 
the following experiments. Fig. 2 presents the adsorption 
capacities of P as a function of contact time. Obviously, the 
adsorption capacities increased rapidly within the initial 
20 min, further being increased to equilibrium slowly after 
about 200 min. The rapid adsorption of P on SCs could be 
ascribed to the surface adsorption of P on SCs. After that, 
internal diffusion contributed to the adsorption of P on SCs, 
which is time dependent. SC-700 and SC-800 had the adsorp-
tion capacities of 7.5 and 7.44 mg/g to P, they were higher 
than that of 6.99 mg/g for SC-600.

The pseudo-first-order and pseudo-second-order kinetic 
models were given in Eqs. (3) and (4), respectively, to illus-
trate the adsorption kinetics of P on SCs. The corresponding 
kinetic parameters are shown in Table 3.

q q et e
k t= −( )−1 1  (3)

t
q

t
q k qt e e

= +
1

2
2  (4)

where qe and qt are the adsorption amount at equilibrium 
and at time t, respectively. k1 and k2 are subject to pseudo- 
first-order and pseudo-second-order kinetic rate constants, 
respectively.

The correlation coefficients calculated from the pseudo- 
second-order kinetic model were greater than 0.98 as shown 
in Table 3, indicating that the pseudo-second-order kinetic 
model fitted well with the adsorption kinetics of biochar 
to P in aqueous. The adsorption process can be considered 
as chemical adsorption [35]. The order of adsorption rate 
is SC-600 < SC-700 < SC-800, which is in agreement with 
the specific surface area. It is clear that carbonization can 
improve its adsorption performance of P from aqueous 
solution.

The adsorption capacities of phosphate on SCs were 
investigated by the adsorption equilibrium isotherm studies. 
Fig. 3 displays the well-known nonlinear fitting curves of 
the Langmuir and Freundlich isotherm adsorption models, 
which are presented in Eqs. (5) and (6):

q
q K C
K Ce
L e

L e

=
+
max

1
 (5)

q K Ce F e
n=
1

 (6)

where qe and Ce are the equilibrium adsorption capacity and 
concentration, respectively; qmax is the saturated adsorption 
capacity; KL is the constant of surface adsorption strength. 
The parameter of KF describes the adsorption density under 
standard conditions. The parameter of n indicates the bind-
ing energy distribution on the surface [36].

As illustrated in Fig. 3, the adsorption behaviors of the 
three biochars (SC-600, SC-700, SC-800) to phosphate was 
better fitted with the Langmuir model compared with the 
Freundlich model. The correlation coefficients (R2) were 
0.992, 0.991 and 0.993 for Langmuir models, while the cor-
relation coefficients were 0.964, 0.959, 0.961 for Freundlich 
models as shown in Table 4. The relatively higher correlation 
coefficients confirmed the well-fitted Langmuir model. The 
corresponding maximum adsorption capacities of SC-600, 
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Fig. 2. Change in the adsorption amount of phosphate as a 
function of time.

Table 3
Adsorption kinetic parameters of phosphate on the SCs

Adsorbents Pseudo-first- order kinetics Pseudo-second-order kinetics

k1 (min–1) R² k2 (g/(mg min)) qe (mg/g) R² 

SC-600 0.0157 0.943 0.0124 7.0621 0.990
SC-700 0.0135 0.977 0.0155 7.6336 0.996
SC-800 0.0166 0.883 0.0190 7.5131 0.995
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SC-700, SC-800 were 18.95, 20.98 and 19.69 mg/g, respectively, 
which were consistent with the BET surface area of the SCs 
(SC-700 > SC-800 > SC-600).

The Langmuir adsorption model is based on the follow-
ing assumptions: (1) adsorption is limited to monolayer; 
(2) all surface sites are equivalent; (3) the adsorption site 
is independent of the occupancy rate of adjacent sites 
[37]. It can be concluded that the adsorption of phosphate 
on biochar belongs to the surface monolayer adsorption. 
Moreover, the dimensionless constant separation fac-
tor RL can be used to represent the basic characteristics of 
the Langmuir isotherm, as described in Eq. (7) [38]:

R
K CL
L

=
+
1

1 0

 (7)

where C0 indicates the initial concentration of the adsorbate 
(mg/L), KL is the Langmuir constant (L/mg). RL represents the 
affinity of adsorption, that is, 0 < RL < 1 for favorable adsorp-
tion, RL > 1 for unfavorable adsorption, RL = 1 for reversible 
adsorption; and RL = 0 for irreversible adsorption [38]. 
The obtained RL value, which ranged from 0 to 1 (Table 4), 
indicated that adsorption of P on the sludge biochar was 
favorable.

Since the species of phosphate are related to the pH 
value of the solution, the adsorption capacities of SC-800 
for KH2PO4, K2HPO4 and K3PO4 are displayed in Table 5. 
Biochar had the greatest adsorption capacity of 13.89 mg/g 
for K3PO4 at the dosage of 3 g/L, while they were 9.86 and 
7.06 mg/g for K2HPO4 and KH2PO4, respectively. It indicates 
that the adsorption process is ascribed to the chemisorptions 
between the adsorbent and PO4

3–.
To further evaluate the adsorption capacity of P on 

SCs, the maximum adsorption capacities of various adsor-
bents for P reported in the literature were shown in Table 6. 
Carbon-based materials were widely used as adsorbents 
due to their high surface area. Sewage sludge carbon 
had the maximum adsorption capacities of 2.77 mg/g for 
phosphate [39]. However, natural zeolites exhibited poor 
adsorption capacity of phosphate due to low affinity 
[40–42]. Subsequently, a series of zeolite composites were 
prepared to increase the adsorption ability to phosphate. 
Zirconium-modified zeolite (ZrMZ) [43], nano Z–Al (alumi-
num zeolite) [40], NaOH-activated and lanthanum-impreg-
nated zeolite (NLZ) were synthesized to adsorb phosphate 
[44]. All of them exhibited better adsorption ability to phos-
phate, and the maximum adsorption capacities were 5.96, 
7.0 and 8.96 mg/g, respectively. Further, adsorption ability 
could be enhanced by metal ions decoration. Mg–Al hydro-
talcite-loaded kaolin clay (MKC) had a maximum adsorp-
tion capacity of 11.85 mg/g as shown in Table 5 [45]. In this 
work, the excess sludge carbonized at 800°C showed a con-
siderable adsorption capacity of 19.69 mg/g to phosphate, 
owing to the interaction of Ca in sludge carbon and phos-
phate in the solution.

3.3. Characterization of adsorption products

To explore the adsorption mechanism of biochar to 
phosphate, Fig. 4 shows the XRD patterns of SC-800 and 
SC-800 after adsorption of KH2PO4, K3PO4, respectively. 
It can be seen that two distinct diffraction peaks appeared 
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Fig. 3. Langmuir and Freundlich models fitted adsorption 
equilibrium isotherms of phosphate on the SC-600, SC-700, 
SC-800.

Table 4
Fitted isotherm adsorption parameters of biochar for K3PO4

Samples Langmuir Freundlich

qmax (mg/g) KL(L/mg) RL R² KF (mg–1)(L mg–1)1/n 1/n R²

SC-600 18.95 0.021 0.713 0.992 1.321 0.496 0.964
SC-700 20.98 0.020 0.701 0.991 1.349 0.509 0.959
SC-800 19.69 0.021 0.712 0.993 1.363 0.497 0.961

Table 5
Comparison of adsorption ability of SC-800 to phosphates in 
varied form

KH2PO4 K2HPO4 K3PO4

pHa 6.56 8.23 10.69
pHb 8.39 9.58 10.65
Qe (mg/g) 7.06 9.86 13.89

apH before adsorption.
bpH after adsorption.
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near at 27.25° and 42.17° after adsorption of K3PO4 on 
SC-800. Through the PDF card search analysis, the two peaks 
were assigned to CaH2P2O5 (PDF#36-0002) and Ca(H2PO4)2 
(PDF#09-0390), respectively. The results showed that element 
Ca in sludge contributed to the phosphate adsorption except 
for Fe, Si, etc. The Ca can react with K3PO4 to form two crys-
talline products of CaH2P2O5 and Ca(H2PO4)2. In addition, the 
diffraction peak of CaH2P2O5 was higher and sharper, indi-
cating that CaH2P2O5 exhibits high crystallinity. Moreover, 
desorption of phosphate was not observed in the aqueous 
solution of pH 7, confirming that the formed products of 
CaH2P2O5 and Ca(H2PO4)2 were stable. Therefore, the Ca ele-
ment contained in the SC-800 can react with K3PO4 to form 
a crystal mineral to recover the phosphate from wastewater.

Fig. 5 showed the FT-IR spectrum of SC-800 before and 
after adsorption of KH2PO4 and K3PO4, respectively. The 
spectra after adsorption were almost identical. The differ-
ence between the spectra before and after adsorption was 
mainly reflected at around 1,150 cm–1. The maximum absorp-
tion peak before adsorption occurred at around 1,150 cm–1 to 
about 1,400 cm–1. The absorption peak was mainly vibrational 
peaks of C–O, C=C and C=O, and the absorption peaks were 

mainly telescopic carboxylic acids, carbonates, aromatic rings 
and amides. Since sludge was used as a raw material in this 
work, the decomposition of organic matter contained therein 
will produce C=C and C=O. After adsorption of KH2PO4 and 
K3PO4 on SC-800, the P=O characteristic peak of 1,300 cm–1 
was transferred to about 1,051 cm–1, and the position of 
1,200 cm–1 in the original sludge carbon was changed. In 
summary, KH2PO4 and K3PO4 could be adsorbed on the SCs.

3.4. Application of the recovered phosphate as uranium 
decontaminant

Since the CaH2P2O5 and Ca(H2PO4)2 were the main 
products after phosphate recovery, they were considered 
as uranium decontaminant due to that the hydroxyapatite 
was reported for uranium adsorption in our previous study 
[31,32]. Fig. 6 presented a comparison of the uranium adsorp-
tion on SC-800 and SC-800-K3PO4 at various initial concentra-
tion. Clearly, the removal efficiency of uranium on SC-800 was 
99.9%, and the adsorption capacity was 9.99 mg/g when the 
uranium initial concentration was 10 mg/L, but the removal 
efficiency decreased to 82.7% as the initial concentration 
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Table 6
Comparison of the maximum adsorption capacities of reported adsorbents to phosphate

Adsorbents Surface  
area (m2/g)

C0  
(mg/L)

pH Qmax  

(mg/g)
References

SC-800 132.56 20 Unadjusted 19.69 This work
SAC 218.37 5 5 2.77 [39]
ZrMZ 71.83 3 7 5.96 [43]
Z-Al – 25 7 7.0 [40]
NLZ – 5 7 8.96 [44]
MKC 23.57 50 7.5 11.85 [45]
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increased to 20 mg/L. Interestingly, the adsorption capac-
ity of uranium on SC-800-K3PO4 was 19.98 mg/g when the 
uranium initial concentration was 20 mg/L. The uranium 
adsorption capacity on SC-800-K3PO4 was quite higher than 
that on SC-800 when the initial concentration increased to 
20 mg/L. Because the phosphate was determined in SC-800, 
it was easy to understand that the SC-800 could adsorb the 
uranium from aqueous solution, thus the nano-flakes were 
formed after uranium adsorption as shown in the inset (a) 
in Fig. 6, the nano-flakes were similar with the uranium 
adsorbed on the recovered hydroxyapatite reported in our 
previous work [46]. While the phosphate was adsorbed on 
SC-800, the uranium adsorption capacity on SC-800-K3PO4 
was highly increased as described above, nano-flakes were 
also observed as shown in the inset (b) in Fig. 6. CaH2P2O5 and 
Ca(H2PO4)2 were observed on SC-800-K3PO4 after phosphate 
adsorption on SC-800, the favorable uranium adsorption on 
SC-800-K3PO4 was ascribed to the interaction of uranium 
with CaH2P2O5 and Ca(H2PO4)2, further nano-flakes were 
also formed [32]. Thus, the SC-800 could be a promising 
decontaminant for phosphate adsorption and further for 
uranium adsorption.

4. Conclusions

The excess sludge can be converted into biochar by car-
bonization at different temperatures and used to remove 
phosphate from wastewater. SC-800 performed the high-
est adsorption capacity and rate to phosphate. The pseu-
do-second-order kinetic model and Langmuir model could 
describe the adsorption behavior of phosphate on SC-800 
well. Monolayer adsorption contributed to the phosphate 
adsorption on SC-800, which is a favorable adsorption pro-
cess. Among the KH2PO4, K2HPO4 and K3PO4, SC-800 exhib-
ited the highest adsorption capacity for K3PO4. CaH2P2O5 
and Ca(H2PO4)2 crystals were the fate of phosphate being 
adsorbed on SC due to the reaction of Ca in the sludge car-
bon with PO4

3–. Furthermore, the SC-800-K3PO4 could be 
promising for uranium decontamination due to the presence 

of CaH2P2O5 and Ca(H2PO4)2. Thus, the sewage sludge could 
be converted into a promising decontaminant for recycling 
phosphate and removing uranium from aqueous solution.
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