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a b s t r a c t
A microalgae-oxide complex (FeOOH@Microalgae) was successfully synthesized; it showed a 
high adsorption ability for removal of Cr(VI), Cu(II), Pb(II), Cd(II), and Congo red from contami-
nated aqueous solution. The product was characterized using X-ray diffraction, scanning electron 
microscopy (SEM), transmission electron micrography (TEM), X-ray photoelectron spectroscopy, 
and Fourier-transform infrared spectroscopy. The SEM and TEM images showed that the complex 
formed using nano-sized FeOOH, which covered micron-sized microalgae, and the degree of prod-
uct aggregation was related to the synthetic temperature. The aggregation degree increased with 
a decrease in the synthesis temperature, thus, micron-sized microalgae can be immobilized. The 
adsorption experimental results of pH effect, sorption kinetics, and the isotherm indicated that 
FeOOH@Microalgae showed a reasonable adsorption effect on four metal ions, and the adsorption 
ability of Pb(II) was substantially higher than that of the other three ions. Kinetic data showed agree-
ment with a pseudo-second-order equation, and the Langmuir model fit the isotherm data of four 
heavy metal ions. The adsorption mechanism indicated that the adsorption process was related to 
the surface hydroxyl (or carboxyl) groups of the adsorbent that interacted with metal ions. Hence, 
FeOOH@Microalgae, as an efficient adsorbent, can be extensively applied for the treatment of heavy 
metal contaminated wastewater.
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1. Introduction

The intensification of social modernization processes has 
resulted in the great pollution of the living environment [1,2]. 
For example, water pollution and soil pollution [3], espe-
cially due to heavy metals [4], is a serious threat to human 
survival [5,6]. Among the various kinds of heavy metals, 
Cr(VI), Cu(II), Pb(II), and Cd(II) are more serious due to their 
high toxicity and negligible biodegradability [7–10]. The bio-
accumulation of these metals, beyond a permissible quan-
tity, can cause various diseases, even cancer [11–13]. Thus, 
the removal of heavy metal ions from water is critical, the 
protection of human health and the environment must be 
prioritized [14,15].

Many technologies exit to remove heavy metal ions 
from polluted aqueous solution, including physical and 
chemical methods [16–21]. However, these methods have 
various shortcomings, such as high cost, low removal rate, 
laborious techniques, and even secondary pollution [22,23]. 
Conversely, adsorption has attracted extensive research 
attention due to its simple operation and low cost [24,25], 
including numberous adsorbents for heavy metal removal 
from wastewater [26,27]. Recently, several reports have 
addressed the application of metal oxide materials in the 
treatment of heavy-metal pollution [28,29] due to their 
affinity and selectivity in the adsorption process. In addi-
tion, microalgae are a potentially biological adsorbent 
that can remove heavy metals from contaminated aque-
ous solution [30–32]. The surface hydroxyl and carboxyl 
groups of microalgae can interact with metal ions [33]. 
Dead microalgae also show excellent adsorption ability. 
However, research about the combination of materials and 
biological adsorbents are seldom reported. In this study, 
with different reaction temperatures, a compound adsor-
bent was formed by combining metal oxides and microal-
gae, which had the advantages of metal oxides and microal-
gae to overcome these limitations and treat heavy metal 
contaminated wastewater.

The main contents of this study are listed as follows: 
(i) the preparation of the compound adsorbent via microal-
gae covering metal oxides at different reaction temperatures 
(70°C, 60°C, and 50°C), respectively, (ii) the characterization 
of product by X-ray power diffraction (XRD), Fourier trans-
form infrared spectroscopy (FT-IR), scanning electron micros-
copy (SEM), transmission electron microscopy (TEM), and 
X-ray photoelectron spectroscopy (XPS), (iii) the investiga-
tion of the sorption kinetics and isotherms of the compound 
adsorbent, and (iv) the study of adsorption mechanisms.

2. Materials and methods

2.1. Synthesis of the materials

The Synechocystis sp. PCC6803 was inoculated in the 
sterilized BG-11 medium and cultured at 30°C, pH 7.1, light 
intensity of 2,000 lx and light-dark ratio of 12:12 h [34]. The 
bottles were shake twice a day to prevent agglomeration [35]. 
After 6 d in these conditions, the culture was centrifuged at 
10,000 rpm for 10 min to harvest the microalgae cells. The 
washed cells were lyophilized and then ground into powder.

In a typical procedure, FeCl3 (0.243 g) and Synechocystis 
sp. PCC6803 powder (0.05 g) was dissolved in 35 mL of 

distilled water with urea (0.25 g). After stirring for 30 min, the 
reaction solution was poured into a Teflon-lined autoclave. 
The autoclave was sealed and placed at one of three different 
reaction temperatures (70°C, 60°C, and 50°C) for 6 h. After 
the reaction, the precipitate was collected by centrifugation, 
washed three times with ethanol and deionized water, and 
then dried at 70°C for 6 h.

2.2. Characteristic analysis

The products before and after adsorption were character-
ized by the following techniques. Crystal phases of the mate-
rial were identified using a D/max-2400 XRD meter (Rigaku, 
Japan) at 100 kV and 40 mA, with Cu Ka radiation (k = 1.542 Å) 
and a scanning rate of 4°min–1. The surface morphology and 
structure were examined with SEM, and an energy dispersive 
X-ray (EDX) microanalysis was performed using the ZEISS 
DSM-960 microscope (Germany) equipped with an EDX unit. 
A high-resolution image was observed by the TecnaiG2 F20 
S-TWIN TMP transmission electron microscopy (America). 
The FT-IR spectra an Bruker Vertex 70 FT-IR spectrophotom-
eter instrument (Germany) in the 400–4,000 cm–1 range.

2.3. Adsorption experiments

The different concentrations of Cr(VI), Cu(II), Pb(II), and 
Cd(II) were prepared using K2Cr2O7, Cu(NO3)2, Pb(NO3)2, 
and CdCl2, respectively. The effect of pH (2.0–8.0) on the 
adsorption ability of FeOOH@Microalgae on different metal 
ions was investigated. For the adsorption kinetics study, 
80 mg of FeOOH@Microalgae was added to 100 mL solution 
(initial ion concentration of 80 mg L–1). The concentration was 
measured by sampling at a specific time (5, 10, 20, 30, 60, 90, 
120, 150, 180, and 240 min). For the adsorption isotherms, 
80 mg of the FeOOH@Microalgae was added to 100 mL 
solutions with different initial ion concentrations (10, 20, 
50, 100, 200, and 500 mg L–1, respectively). Simultaneously, 
Synechocystis sp. PCC6803 and FeOOH were used as con-
trol groups. After stirring for 3 h at room temperature, the 
supernatant was separated and measured by inductively 
coupled plasma (ICP).

2.4. Removal of an organic pollutant

Congo red (C32H22N6O6S2Na2), which is an azo dye, was 
utilized as an organic water pollutant [36]. The FeOOH@
Microalgae (0.02 g) was mixed with 20 mL of Congo red 
solution (initial concentration 50 mg L−1). Simultaneously, 
microalgae and FeOOH were used as control groups. 
The supernatant was separated at 10,000 rpm for 5 min at 
different adsorption time, and analyzed at 300–650 cm–1 
wavelength by ultraviolet-visible spectroscopy (Shimadzu, 
model 2550).

2.5. Effects of co-existing cation

The effects of four common coexisting ions (K+, Na+, 
Mg2+, and Ca2+) on FeOOH@Microalgae adsorption behav-
ior were investigated in single-metal systems (Cr(VI)/
Cu(II)/Pb(II)/Cd(II)). The experiment was performed in the 
following conditions: metal ion concentration: 40 mg/L, 
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coexistence ion concentration: 0.01 mol/L, adsorption dose: 
1.0 g/L, pH: 3.0 for Cr(VI), pH: 5.0 for Cu(II)/Pb(II)/Cd(II), 
adsorption temperature: 30°C. After 60 min of oscillating 
adsorption, the concentration of ions (Cr(VI)/Cu(II)/Pb(II)/
Cd(II)) was determined by ICP in the solution. All adsorption 
experiments were performed in triplicate.

3. Results and discussion

3.1. Characterization of the product

3.1.1. XRD analysis

The chemical composition of the synthesized prod-
uct was analyzed using XRD measurement. As shown in 
Fig. 1a, the diffraction peaks from different reaction tem-
peratures were consistent with the recorded values of 
FeOOH [Joint Committee on Powder Diffraction Standards 
(JCPDS) 75–1594]. The sharp diffraction peaks in the spec-
tra indicated that the prepared products exhibited satis-
factory crystal form. The following formation mechanism 
was proposed (Fig. 4). FeOOH was obtained by hydro-
thermal reaction of FeCl3 with urea in aqueous solution, 
as described in Eqs. (1) and (2), which was similar to the 
synthesis of FeOOH discussed by Gou et al. [37].

NH CONH H O NH H O CO2 22 2 3 23 2+ → ⋅ +  (1)

FeCl NH H O FeOOH NH Cl H O2 4 23 33 3+ ⋅ → + +  (2)

Fig. 1a shows that the impurity peaks of the prod-
uct synthesized at 50°C were less detected than that at 
70°C and 60°C. This finding indicated that the lower reac-
tion temperature can guarantee the synthesis of FeOOH. 
The main reason for the destruction of microalgae structure 
was the higher synthesis temperature. With a decrease in 
the reaction temperature, the intensity of the characteris-
tic peaks was not distinctly weakened but the intensity of 
the impurity peaks can be distinctly reduced, which sug-
gested that the decrease in reaction temperature can not 
only ensure the formation of FeOOH but also maintain the 

complete structure of microalgae, which provided a base 
for synthesizing FeOOH. This finding also revealed that 
5°C was the optimal synthesis temperature, which not only 
enabled successful formation of FeOOH on the surface of 
microalgae but also protected the microalgae structure, 
and therefore, caused excessive number of peaks. Thus, the 
FeOOH synthesized at 50°C was selected to investigate the 
adsorption kinetics and isotherms of different metal ions.

3.1.2. FTIR analysis

To further study the composition of functional groups of 
synthetic products, Fourier infrared spectrum analysis was 
performed as shown in Fig. 1b. The infrared spectrums of the 
products synthesized at the different temperatures had iden-
tical group compositions. The functional groups of products 
are summarized in Table 1. The spectra at 3,417; 1,651; 1,538; 
1,446; 1,236; 1,154; 1,028; 838; and 669 cm–1 were attributed 
to O–H stretching [38], C=C, and C=O stretching vibrations 
of the hydrocarbon, carbonyl moieties on the material sur-
face [39], protonated amine (–NH3

+), C–H stretch bending of 
CH2 group [40], C–C skeleton vibration [41], –CO stretch of 
COOH [42], the characteristic band of CH–O–CH2 [43], and 
bending modes of aromatic compounds [44], respectively. 
The main difference of the products and microalgae was the 
band at 672 cm−1, which can be assigned to the absorption 
peak of FeOOH [45], indicating the synthesis of FeOOH 
in the product. Compared with the microalgal functional 
groups, the products not only retained the characteristic 
functional groups of microalgae, which played key roles in 
adsorbing metal ions but also had unique group composi-
tion (e.g., Fe–O). The synthetic product, which had func-
tional groups of individual microalgae and FeOOH, was a 
complex. This result indicated that the different synthesis 
temperatures did not affect the functional group species 
but could impact the intensity of the characteristic peaks.

3.1.3. XPS analysis

The previous analysis has shown the existence of 
FeOOH in the product. XPS spectra were employed to 

 
Fig. 1. (a) XRD patterns and (b) FTIR spectra of the FeOOH@Microalgae obtained at different reaction temperatures (70°C, 60°C, 
and 50°C).
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further analyze additional evidence of the existence of 
FeOOH (Fig. 2). The survey spectra showed that the main 
common elements of product were Fe, C, and O. The C 
element was the main element of microalgae, and the Fe 
element was the main element of FeOOH, which indicated 
that the synthesized product was a complex of FeOOH 

and microalgae. According to high-resolution scanning 
(Figs. 2b–d), the percentages of Fe, C, and O atoms in the 
product ranged between those of microalgae and FeOOH, 
and the specific element content values can be obtained from 
Table 2, which further indicated that the product (FeOOH@
Microalgae) was a complex of microalgae and FeOOH.

Table 1
Wavenumbers (cm−1) of the FeOOH@Microalgae obtained at different reaction temperatures (70°C, 60°C, and 50°C) and microalgae

Material  
types

Functional groups

–OH C=O –NH3
+ CH –C–O– CH–O–CH2 FeOOH

70°C 3,383 1,653 1,527 1,447 1,153 1,047 670
60°C 3,381 1,650 1,525 1,448 1,154 1,035 674
50°C 3,417 1,651 1,538 1,446 1,154 1,028 669

–OH –CH2 –CONH– –NH3
+ CH –C–O– CH–O–CH2

Microalgae 3,378 2,927 1,655 1,539 1,451 1,154 1,033

 
Fig. 2. XPS spectra for FeOOH@Microalgae, Microalgae and FeOOH, respectively. (a) Survey scans of the spectral region from 0 to 
1,400 eV. (b–d) Represent high-resolution narrow scans of XPS Fe2p, O1s, and C1s, respectively, as a function of electron binding 
energy.
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3.1.4. SEM analysis

SEM was used to study the morphology of products. 
Fig. 3 shows the surface morphology and spectrum analysis 
of the FeOOH@Microalgae synthesized at different reaction 
temperatures. As shown in Figs. 3a–c, the morphology of 
globular microalgae became more distinct with a decrease 
in the reaction temperature because the structure of microal-
gae was destroyed at higher temperature. Thus, the pres-
ence of spherical particles was not evident in the scanned 
image. Figs. 3c and c-1 present the product synthesized at 
50°C, which showed spherical aggregates of approximately 
2 μm and a further tendency to aggregate. Compared with 
Figs. 3c and c-1, the product synthesized at 70°C (Figs. 3a 
and a-1) exhibited an entirely different morphology with 

no visible aggregation of micron particles. This finding 
indicated that the condition at 70°C completely destroyed 
structure of the microalgae considering that the higher 
temperatures can carbonize the microalgae and destroy its 
structure. At the intermediate temperature of 60°C (Figs. 3b 
and b-1), the images showed a distinct microalgae mor-
phology; however, the spherical diameter increased and 
appeared scattered compared with Figs. 3c and c-1. This 
finding indicated that a large amount of FeOOH was syn-
thesized to cover the surface of microalgae at this tempera-
ture but a considerable amount of debris suggested that 
the structure of the microalgae was damaged. In addition, 
spherical particles were relatively more dispersed and less 
aggregated, which showed that the synthetic tempera-
ture can affect the formation of FeOOH and the extent of 
damage to the microalgae structure, as well as the degree 
of aggregation. The high-resolution scanning of the prod-
uct synthesized at 50°C in Figs. 3c-2–c-4 indicated that 
the nanoscale rod-like material covered the surface of the 
micron spherical particles. Via energy spectrum analysis, 
the composition of the rod-like products was determined as 
FeOOH, which indicated that the synthesized product has 
a composite structure formed by nanoscale rod-like FeOOH 
that covered the surface of the microalgae. The results 
showed that 50°C was the optimum synthesis temperature, 

Table 2
Atomic percentage of elements of the FeOOH@Microalgae, 
microalgae, and FeOOH

Constituent Fe atomic % O atomic % C atomic %

FeOOH@Microalgae 11.5 40.53 41.8
Microalgae 0.16 22.98 70.32
FeOOH 23.07 46.07 30.86

 
Fig. 3. SEM images and EDX spectra of the synthesized materials. (a), (a-1), (a-3); (b), (b-1), (b-3); and (c), (c-1), (c-3) represent the SEM 
images and EDX spectra of the synthesized FeOOH@Microalgae at different reaction temperatures (70°C, 60°C, and 50°C, respec-
tively). (c-2), (c-4), and (c-5) represent the high-resolution scanning images of FeOOH@Microalgae.



J. Wang et al. / Desalination and Water Treatment 191 (2020) 263–284268

which formed FeOOH on the surface of the microalgae and 
resulted in the lowest degree of to the microalgae, and the 
aggregation effect was distinct. The XPS analysis showed 
that the product was a complex of microalgae and FeOOH. 
The scanning observations and energy spectrum analysis 
suggested that the surface of the microalgae was covered 
with FeOOH. The analysis results were consistent with the 
characterization results of the XRD.

The element compositions of the products were obtained 
with EDX analysis, and the spectra are shown in Fig. 3. 
The results showed that S and P were the characteristic 
elements of the microalgae, while Fe and O were the major 
elements of FeOOH. As shown in Figs. 3a-3, b-3, c-3, the 
existence of four elements indicated that the product was 
composed of iron hydroxide and microalgae. Combined 
with SEM observation, the results showed that FeOOH 
covered the surface of the microalgae, and as the reaction 
temperature decreased, the carbon content of the synthe-
sized product increased while the iron content decreased. 
The findings also indicated that the lower temperature 
affected the synthesis of FeOOH, while the microalgae were 
weakly damaged to maintain a complete structure. The 
previous XPS analysis revealed that the product was a com-
plex of microalgae and FeOOH. The scanning observation 
and energy spectrum analysis suggested that the product 
consisted of a composite of FeOOH that coated the surface 
of the microalgae.

A possible formation mechanism was proposed 
(Fig. 4). Different synthesis temperatures can produce dif-
ferent structures of products. The synthesis temperature 
of 70°C enabled the synthesis of FeOOH but the structure 
of the microalgae has been completely destroyed, and 
micron spheres cannot be distinctly observed. The synthetic 
FeOOH was not coated with microalgae. Although the syn-
thesis temperature of 60°C also guaranteed the synthesis of 
FeOOH and did not cause distinct damage to the microalgae 
structure, the micron spheres covered with FeOOH were 
not highly aggregated but relatively dispersed. The 50°C 
synthesis temperature can not only guarantee the synthesis 

of FeOOH on the surface of the microalgae but also protect 
the structure of microalgae. A comparison revealed that 
50°C was a better synthesis temperature for attaining the 
synthetic FeOOH that successfully covered the surface of 
microalgae and is highly aggregated.

3.1.5. TEM analysis

TEM was performed to further observe the product 
structure. Fig. 5 shows transmission photographs and 
energy spectra of the product synthesized at 50°C at differ-
ent positions. The TEM analysis of the FeOOH@Microalgae 
(Figs. 5a and a-1) showed a uniform nano-rod shape with an 
average length of 100 nm and an average width of 25 nm. 
Moreover, the energy spectrum (Fig. 5a-1) shows high 
iron content, which indicated that most of the FeOOH was 
distributed on the surface. Nanorods tended to aggregate in 
the center of FeOOH@Microalgae (Fig. 5b). Compared with 
the surface layer of FeOOH@Microalgae (Figs. 5a and a-1), 
the carbon content significantly increased, while the iron 
content relatively decreased, which indicated that the central 
position was a complex of FeOOH and microalgae. However, 
a distinct structure is not visible in the interior (Fig. 5c). The 
low content of Fe indicated that the interior location mainly 
consisted of microalgae with high carbon content. This anal-
ysis suggested that the synthetic product was a complex of 
FeOOH and microalgae. FeOOH was mainly distributed on 
the surface, while microalgae inside the product were cov-
ered by nanorod FeOOH to immobilize the microalgae. The 
immobilizing effect was related to the synthesis temperature.

3.2. Adsorption experiments

3.2.1. Effect of pH on Cr(VI), Cu(II), Pb(II), and Cd(II)

The pH value substantially influences on the functional 
groups of the adsorbent and existence state of metal ions in 
the adsorption process [46,47]. The effect of solution pH on 
the adsorption capacity of heavy metal ions using FeOOH@

 
Fig. 4. Schematic of the formation mechanism of FeOOH@Microalgae.
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Microalgae was investigated at pH 2.0–8.0 (Fig. 6). As shown 
in Fig. 6, the influence of the pH values for Cu(II), Pb(II), 
and Cd(II) adsorption was nearly identical. The adsorp-
tion rate increased with an increase in pH value. The maxi-
mum adsorption was observed at pH 5.0–6.0. Cu(II), Pb(II), 
and Cd(II) are presented in Eqs. (3) and (6) at different pH 
values in the aqueous solution [48]. For example, in the 
adsorption process of Cu(II) [49], a large amount of NH2 on 
the surface of the adsorbent was protonated within a low 
pH range [50], as shown in Eqs. (3), which was adverse to 
adsorption of Cu(II). However, with a gradual increase in 
pH, the protonation degree of NH2 on the surface of the 
adsorbent decreased, and a substantial amount of NH2 was 
released for the adsorption of Cu(II) (Eqs. (5) and (6)). Thus, 
the adsorption amount of Cu(II) increased, which indicated 
that electrostatic action had a major role in the adsorption 
process of Cu(II). The adsorption process of Pb(II) and 
Cd(II) were similar to that of Cu(II).

− + = −+ +NH H NH2 3  (3)

− + = − =( )+ + + + + +NH M NH Cu M Pb Cu and Cd2
2

2
2 2 2 2 2,  (4)

− + = −− −NH OH NH OH2 2  (5)

− + = −

=( )
− + −

+ + + + +

NH OH M NH OH

M M Pb Cu and Cd
2

2
2

2 2 2 2 2



,  (6)

For the acidic condition, the main forms of Cr ions 
are HCrO4

−, Cr2O7
2−, Cr2O4

2−, and Cr3O10
2− in aqueous solution. 

As shown in Fig. 6a, the removal of Cr ions was substan-
tially affected by the pH value, and the maximum adsorp-
tion capacity was observed at pH 3.0. At a lower pH value, 
the adsorbent tended to be more protonated and preferred 
the dominant adsorption of HCrO4

− ion [51,52]. With an 
increase in pH value, the degree of protonation decreased, 
and the competition between the hydroxyl group and the 
chromate caused a reduction in the adsorption effect. The 
adsorption effect of pH value on Cr(VI) was similar to 
the results reported in previous articles [53]. Baran et al. 
[53] investigated the effect of different initial pH (2.0–8.0) 
for the Cr(VI) adsorption effect on different adsorbents. 
The 10 mg adsorbent (chitin, chitosan, ion exchanges) was 
added to 10 mL of 100 mg/L Cr(VI) solution in the adsorp-
tion condition (200 rpm and 25°C), which showed that the 
pH 3.0 was optimal for chitin and chitosan. With the pH 
increase in the adsorption medium, Cr(VI) adsorption 
efficiency gradually increased until the optimal pH was 
attained. When the initial pH value was increased, Cr(VI) 
precipitation occurred due to the presence of a large num-
ber of –OH in the adsorption media. At very low pH, the 
adsorbent surface was surrounded by a large number of 
hydronium ions, and Cr(VI) was mainly the anion of HCrO4

– 
and Cr2O7

2–. These hydronium ions enhanced Cr(VI)’s inter-
action with the adsorbent binding site via greater attraction. 
As a result, the cause of the adsorption capacity difference 
of FeOOH@Microalgae by pH values was distinct.

3.2.2. Effects of co-existing cation

In general, industrial wastewater contains not only 
heavy metal ions, but also some inorganic cations (such as 

 
Fig. 5. TEM images of the synthesized FeOOH@Microalgae at 50°C. (a–c) TEM images and (a-1, b-1, and c-1) energy spectrum of 
exposed/intermediate/buried structure.
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K+, Na+, and Mg2+). In the adsorption process, the effects 
of these ions on the adsorption capacity of the adsorbents 
should be considered due to their competition for active 
sites [54,55]. Fig. 7 shows the effect of common cations on 
the adsorption capacity of FeOOH@Microalgae in a single 
metal system. The coexisting ions can decrease the adsorp-
tion efficiency of FeOOH@Microalgae to metal ions but the 
degree of decrease differed, in which Na+ had the least influ-
ence (<3%). This finding may be attributed to the competi-
tive adsorption from coexisting ions, which indicated that 
the cation exchange mechanism had a role in the ion removal 
process. Note that the presence of 0.01 M ion strength was 
common in most practical wastewater systems. Although 
coexisting ions caused FeOOH@Microalgae to reduce the 
adsorption efficiency of metal ions, the reduction degree was 
relatively low (<10%). Therefore, FeOOH@Microalgae was 
advantageous to the removal of metal ions.

3.2.3. Effect of other metal other ions after adsorption of 
one metal ion

After FeOOH@Microalgae adsorbed one metal ion, the 
adsorption experiments of the remaining three ions were 
performed in the following conditions: adsorption dose of 
1.0 g/L, temperature of 30°C, and initial ion concentration 
of 100 mg/L. The experimental results are shown in Fig. 8. 

The result indicated that the adsorption effect of other ions 
was distinctly reduced after the adsorption of one metal ion. 
The result may be contributed to the notion that the binding 
sites on the surface of the adsorbent were constant, and most 

 
Fig. 6. Effect of pH on FeOOH@Microalgae adsorption of (a) Cr(VI), (b) Cu(II), (c) Pb(II), and (d) Cd(II) (initial concentration: 
80 mg L–1; adsorbent dose: 0.5 g L−1; contact time: 6 h; temperature: 30°C).

 

Fig. 7. Effects of co-existing salts on the adsorption of Cr(VI), 
Cu(II), Pb(II), and Cd(II).
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of the adsorption sites have been saturated after the adsor-
bent adsorbed one metal ion. For other ions, therefore, few 
empty sites remained. Another explanation was the exis-
tence of large structural groups near the residual adsorption 
sites to prevent the approach and binding of metal ions.

3.2.4. Adsorption kinetics

In the adsorption process, kinetics is a considerably 
important parameter for designing sorption systems and 
selecting the optimum operating conditions for the metals 
removal process [40,43]. The Lagergren-first-order model 
and pseudo-second-order model are generally expressed as 
Eqs. (7) and (8) [56]:

ln lnq q q k te t e−( ) = − 1  (7)

t
q k q

t
qt e e

= +
1

2
2  (8)

where qe and qt (mg g–1) are the equilibrium amount adsorp-
tion capacity and dynamic (at time t) amount adsorption 
capacity, respectively, k1 and k2 are the rate constants of 
pseudo- first-order (min−1) adsorption and pseudo-second- 
order (g mg−1 min−1) adsorption, respectively.

Fig. 9 shows the adsorption effect of FeOOH@Microalgae 
for four metal ions. The adsorption capacity was rapidly 
enhanced at the initial time and then slowed and reached 
equilibrium. At room temperature, approximately 1 h was 
sufficient to attain adsorption equilibrium. The adsorp-
tion effects of FeOOH@Microalgae for four heavy metals 
were considerably higher than those of pure Synechocystis 
sp. PCC6803 and FeOOH. This finding indicated that 
the FeOOH@Microalgae had better adsorption capacity. 
FeOOH@Microalgae combined the advantages of FeOOH 
and Microalgae; several groups exist on the surface of 
Microalgae and FeOOH generally had a large specific sur-
face area. FeOOH@Microalgae combined these advantages 
to enhance the adsorption capacity. Table 3 presents the k1, 
k2, and R2 values of the two kinetic models. Compared with 

 
Fig. 8. Adsorption of three metal ions on FeOOH@Microalgae after adsorption of one metal ion. (a–d) represented the adsorption of 
other metals after adsorption of Cr(VI), Cu(II), Pb(II), and Cd(II), respectively.
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the pseudo-first-order model, the correlation coefficient 
values (R2) of the adsorbents indicated a better fit of the 
pseudo-second-order equation with the experimental data. 
According to the pseudo-second-order equation, the cal-
culated values (qe) showed agreement with the experiment 
data of FeOOH@Microalgae. The results indicated that the 
adsorption of heavy metals on the adsorbents obeyed the 
pseudo-second-order kinetic, which suggested a chemisorp-
tion process [57].

In the pseudo-second-order model, the estimated 
equilibrium uptake (qe) of the FeOOH@Microalgae val-
ues were 27.61 mg g–1 for Cr(VI), 39.63 mg g–1 for Cu(II), 
48.17 mg g–1 for Pb(II), and 25.93 mg g–1 for Cd(II). The equi-
librium rate constants (k2) were 0.004 g mg–1 min–1 for Cr(VI), 
0.004 g mg–1 min–1 for Cu(II), 0.005 g mg–1 min–1 for Pb(II), and 
0.003 g mg–1 min–1 for Cd(II). These results confirmed that 
the FeOOH@Microalgae can selectively bind with different 
heavy metal ions. Compared with Cr(VI), Cu(II), and Cd(II), 
the FeOOH@Microalgae showed a better adsorption effect on 
Pb(II).

3.2.5. Equilibrium adsorption isotherms

Two typical isotherm models Langmuir and Freundlich 
isotherm were used to analyze the equilibrium data of the 
adsorption of four heavy-metal ions on FeOOH@Microalgae 
[40,43]. The Langmuir and Freundlich isotherm are expressed 
as Eqs. (5) and (6):

q
q K c
K ce

m L e

L e

=
+1

 (9)

q K ce F e
n= 1/  (10)

where ce (mg L−1) is the equilibrium concentration of the total 
ion in the solution; qe (mg g−1) is the maximum adsorption 
capacity; KL is the Langmuir constant; KF is the Freundlich 
constant; and 1/n is the Freundlich empirical parameter, 
which represents the heterogeneity of the system.

Fig. 10 shows the adsorption Cr(VI), Cu(II), Pb(II), 
and Cd(II) for different initial concentrations. The 

 
Fig. 9. Adsorption kinetic plots of the different heavy metal ions. (a–d) represent Cr(VI), Cu(II), Pb(II), and Cd(II), respectively, with 
the FeOOH@Microalgae (experiment conditions: initial Cr(VI), Cu(II), Pb(II), and Cd(II) concentration: 80 mg L−1; adsorbent dose: 
0.5 g L−1; contact time: 6 h, solution pH: 3.0 for Cr(VI), 5.3 ± 0.1 for Cu(II)/Pb(II)/Cd(II); temperature: 30°C).
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calculated parameters are summarized in Table 4. According 
to the values of the correlation coefficients (R2), the Langmuir 
model was more suitable than the Freundlich model 
(R2 = 0.601, 0.659, 0.663, and 0.678 for Cr(VI), Cu(II), Pb(II), 
and Cd(II), respectively, of the FeOOH@Microalgae) for 
describing the adsorption process. This finding suggested a 
homogeneous adsorption process of heavy metal ions on the 
sorbent when a heterogeneous adsorption was assumed, due 
to the diversity of the adsorption sites. The 1/n values of the 
sorption of Cr(VI), Cu(II), Pb(II), and Cd(II) on the FeOOH@
Microalgae indicated that the sorption intensity was satis-
factory (or favorable) at relatively high concentrations but 
substantially less at lower concentrations [58,59].

Based on this isotherm, the maximum adsorption 
capacities of the FeOOH@Microalgae were approximately 
31.06 mg g−1 for Cr(VI), 54.04 mg g−1 for Pb(II), 40.63 mg g−1 
for Cu(II), and 30.83 mg g−1 for Cd(II). These values were 
considerably higher than those of previously reported nano-
materials [60–66]. The adsorption capacity at equilibrium 
was substantially higher than that of pure Synechocystis sp. 
PCC6803 and FeOOH, and approximately 10 times higher 
than that of FeOOH. The maximum adsorption capaci-
ties of various adsorbents previously reported for Cr(VI), 
Cu(II), Pb(II), and Cd(II) are summarized in Table 5. These 
results indicated that FeOOH@Microalgae showed a large 
adsorption capacity for Cr(VI), Cu(II), Pb(II), and Cd(II), 
indicating that it can be potentially employed as an excellent 
adsorbent for heavy metals in water treatment.

3.2.6. Adsorption capability for Congo red

To further investigate the advantages of FeOOH@
Microalgae in water treatment, the adsorption experiment 

about Congo red was performed. Fig. 11 showed the adsorp-
tion efficiency of Congo red solutions over time after treat-
ment with FeOOH@Microalgae. FeOOH@Microalgae was 
capable of a removal efficiency of approximately 90% for 
Congo red. The maximum adsorption capacity of FeOOH@
Microalgae for Congo red was calculated to be 96 mg g−1. 
The removal efficiency was largely attributed to the compos-
ite structure of FeOOH and microalgae and the electrostatic 
attraction between the FeOOH@Microalgae and Congo red. 
The adsorption capabilities for Congo red (Fig. 8a), which is 
FeOOH@Microalgae > commercial FeOOH > Synechocystis 
sp. PCC6803 powder, indicated that combining FeOOH 
with microalgae can significantly improve the adsorption 
effect for Congo red. The result was also better than the 
previously reported adsorption capacities of some materi-
als for Congo red [110].

3.3. Adsorption mechanism

3.3.1. FTIR analysis

To further confirm the adsorption mechanism of FeOOH@
Microalgae, the changes of characteristic adsorption peaks 
in adsorbents before and after adsorption were investigated 
using FTIR. As shown in Fig. 12 and Table 6, before and 
after adsorption of heavy metals, the position, and shape of 
the characteristic peaks were substantially shifted. The O–H 
peak at 3,417 cm–1 for FeOOH@Microalgae was observed 
before adsorption, which was shifted to 3,292; 3,297; 3,285; 
and 3,273 cm–1 after adsorption of Cr(VI), Cu(II), Pb(II), and 
Cd(II), respectively (Fig. 11a). The –CH2 stretching vibra-
tion was at and 2,926 cm–1, which was observed at 2,927; 
2,927; 2,926; 2,921 cm–1 after adsorption of four metal ions. 

Table 3
Comparison of rate constants calculated based on the pseudo-first-order and pseudo-second-order models

Heavy metal Lagergren-first-order model Pseudo-second-order model

qe (mg g–1) k1 (min–1) R2 qe (mg g–1) k1 (mg g–1 min–1) R2

Cr(VI)

FeOOH@Microalgae 25.427 0.079 0.961 27.611 0.004 0.993
Microalgae 16.472 0.071 0.980 17.949 0.006 0.995
FeOOH 3.032 0.148 0.944 3.203 0.076 0.984

Cu(II)

FeOOH@Microalgae 36.257 0.069 0.916 39.628 0.004 0.967
Microalgae 18.168 0.107 0.964 19.397 0.008 0.994
FeOOH 5.546 0.038 0.964 6.333 0.008 0.983

Pb(II)

FeOOH@Microalgae 46.419 0.087 0.990 48.168 0.005 0.991
Microalgae 9.386 0.041 0.949 10.578 0.005 0.982
FeOOH 7.681 0.029 0.956 9.047 0.004 0.941

Cd(II)

FeOOH@Microalgae 23.644 0.068 0.965 25.932 0.003 0.994
Microalgae 15.418 0.049 0.979 17.347 0.004 0.994
FeOOH 3.114 0.046 0.984 3.537 0.056 0.973
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Furthermore, the C=C and C=O stretching vibrations of the 
hydrocarbon and carbonyl moieties at 1,651 cm–1 on the sur-
face of FeOOH@Microalgae were observed at 1,662; 1,659; 
1,656; and 1,656 cm–1. Similarly, the bending modes of aro-
matics have also shifted, which indicated that the process 
was associated with the aromatic ring. This finding was 
consistent with the results on microalgae immobilization 
by Shen et al. [111]. The wavelength variation of the char-
acteristic peaks before and after adsorption of other adsor-
bents is listed in Table 6. Additionally, FeOOH@Microalgae 
was observed to retain most of the functional groups of the 
microalgae. Several functional groups, such as carboxyl 
(1,651 and 1,446 cm−1), phosphate (1,028 cm−1) and amino 
functional groups (3,417 and 1,540 cm−1), played a major 
role in the adsorption process. According to this conclu-
sion, the FeOOH@Microalgae not only had greater surface 
negative charge but also retained several types of func-
tional groups. This feature enabled FeOOH@Microalgae 
to combine the advantages of microalgae and oxide in the 
adsorption process and acted as an effective adsorbent. 
The possible adsorption on the adsorbent may be involved 
in physical adsorption, complexation with functional 
groups, ionic exchange, surface precipitations and chemical 

reaction with surface sites. Compared with the functional 
groups of microalgae, the functional groups of the FeOOH@
Microalgae with important roles in the adsorption pro-
cess, were generally similar, and the characteristic peaks 
were slightly shifted. Thus, the changes in the FTIR spec-
tra confirmed the complexation of four heavy metals with 
functional groups in FeOOH@Microalgae.

3.3.2. SEM analysis

Fig. 13 shows SEM images and EDX spectra of FeOOH@
Microalgae after adsorption of heavy metals. After 
adsorption of heavy metal ions, the morphology did not 
change significantly. However, the EDX spectrum showed 
that the contents of various elements have significantly 
changed. For FeOOH@Microalgae, the content of heavy 
metal ions can be ranked in the following order: Pb(II) 
> Cr(VI) > Cu(II) > Cd(II). The adsorption effect for Pb(II) 
was considerably higher than that for the other three ions, 
which was largely consistent with the results of previous 
kinetic studies. The adsorption capacity of different ions 
varies substantially due to the different affinities of the 
interaction between the surface of FeOOH@Microalgae and 

 
Fig. 10. Langmuir and Freundlich isotherm for (a) Cr(VI), (b) Cu(II), (c) Pb(II), and (d) Cd(II) adsorption the FeOOH@Microalgae 
(experiment conditions: initial Cr(VI), Cu(II), Pb(II), and Cd(II) concentration: 10–500 mg L−1; adsorbent dose: 0.5 g L−1; contact 
time: 4 h, solution pH: 3.0 for Cr(VI), Cu(II)/Pb(II)/Cd(II) for 5.3 ± 0.1; temperature: 30°C).
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Table 4
Parameters for the Langmuir and Freundlich adsorption isotherm of Cr(VI), Cu(II), Pb(II), and Cd(II)

Heavy metal Langmuir isotherm constants Freundlich isotherm constants

qe (mg g–1) K (L mg–1) RL
2 KF (L g–1) n RF

2

Cr(VI)

FeOOH@Microalgae 31.062 0.062 0.927 11.325 5.948 0.601
Microalgae 9.906 0.013 0.942 2.799 1.001 0.953
FeOOH 5.693 0.036 0.929 4.395 1.423 0.810

Pb(II)

FeOOH@Microalgae 54.045 0.049 0.944 16.949 5.219 0.659
Microalgae powder 23.446 0.045 0.971 6.796 4.883 0.726
Commercial FeOOH 6.912 0.039 0.954 1.794 4.517 0.712

Cu(II)

FeOOH@Microalgae 40.625 0.058 0.948 14.008 5.622 0.663
Microalgae powder 11.024 0.042 0.901 3.099 4.772 0.829
Commercial FeOOH 4.093 0.117 0.839 1.889 7.203 0.955

Cd(II)

FeOOH@Microalgae 30.831 0.040 0.929 8.399 4.70 0.678
Microalgae powder 13.254 0.061 0.989 4.774 5.709 0.754
Commercial FeOOH 7.154 0.026 0.946 1.361 3.750 0.787

Table 5
Comparison of Cr(VI), Cu(II), Pb(II), and Cd(II) maximum adsorption capacities of previously reported values with those of this work

Absorbent Adsorbate pH Temperature (°C) Qm (mg g–1) References

FeOOH@Microalgae Cr(VI) 3.0 30 31.06 This work
FeOOH 25 24.5 [67]
Oxidized carbon 2.0 20 16.26 [68]
Unoxidized carbon 2.0 40 14.31 [68]
Sludge-based adsorbents 2.5 25 15.3 [69]
Iron-impregnated sorbent 5.0 40 13.72 [70]
Mixed maghemite-magnetite nanoparticles 4.0 25 15.4 [71]
FeOOH@Microalgae Cu(II) 5.3 30 40.62 This work
FeOOH 35 27.15 [64]
Magnetic resin microspheres 5.5 25 45.80 [70]
Chloro-phosphate impregnated biochar 5.0 25 18.2 [72]
EDCMS 5.0 25 44.4 [73]
(CMC-g-CMPVA)-Fe3O4/SiO2-NPs 5.5 25 35.3 [74]
Carboxymethylated-bacterial cellulose 4.5 25 12.63 [75]
Go-sheets-cellulose 7.0 25 25.2 [76]
Active carbon 2.1 25 6.144 [77]
Chitosan-cellulose beads 6.5 22 53.2 [78]
Crosslinked chitosan with ECH 6.0 25 35.46 [79]
Poly(vinyl pyridine ethylene glycoldimethacrylate) resin 6.0 25 18.56 [80]
Chitosan-coated sand 6.0 25 12.32 [81]
Chitosan-bound Fe3O4 magnetic nanoparticles 5.0 27 21.5 [82]
Immobilized microorganisms on polyurethane (IPU) foam 6.0 25 28.74 [83]
Magnetic chitosan nanoparticles 5.0 35 35.5 [84]
Bulgarian herbs 4.0 20 30.1 [85]
Wood vinegar treated secondary compost 5.0 25 36.8 [86]

(continued)
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Absorbent Adsorbate pH Temperature (°C) Qm (mg g–1) References

Xanthate-modified magnetic chitosan 5.0 25 34.5 [87]
Amino-functionalized magnetite/kaolin clay 6.0 25 16.50 [88]
Iron-coated Australian zeolite 6.5 25 9.33 [89]
Saw dust biochar 5.0 30 16.11 [90]
FeOOH@Microalgae Pb(II) 5.3 30 54.05 This work
FeOOH 30 5.043 [66]
Barley straw 6.0 25 23.20 [91]
Rice husk 5.0 30 12.61 [92]
Activated carbon 5.0 25 15.96 [93]
Pine cone activated 5.2 25 27.53 [94]
Nano-composite cation 6.0 55 21.01 [95]
MWCNTs/ThO2 nanocomposite 5.5 45 30.01 [96]
Ash/nFe-A 6.0 25 588.24/833.33 [97]
Magnetic resin microspheres 5.5 25 99.19 [98]
Activated carbon 6.5 30 46.58 [99]
Active carbon 2.08 25 6.21 [77]
Crosslinked chitosan with ECH 6.0 25 34.1 [79]
Poly(vinyl pyridine-ethylene glycoldimethacrylate) resin 6.0 25 18.63 [80]
Chitosan-coated sand 6.0 25 8.18 [81]
Polyaniline grafted chitosan 6.0 30 16.07 [100]
Iron-coated Australian zeolite 6.5 25 11.16 [89]
FeOOH@Microalgae Cd(II) 5.3 30 30.83 This work
FeOOH 6.0 20 138 [65]
Magnetic resin microspheres 5.5 25 13.75 [98]
CaTiO3 6.0 32.5/19.7/18.0/17.6 [101–103]
Chloro-phosphate 5.0 20 39.8 [72]
TiO2/lignin 5.0 20 25.73 [104]
Magnesium oxide rice husk biochar composite 5.0 25 21.69 [105]
High-density polyethylene (HDPE) microplastics (MPs) / / 30.5 (ug/g) [106]
Iron-coated Australian zeolite 6.5 25 7.24 [89]
Microplastics 6.0 0.0305 [18]
BC650 5.0 25 31.0 [107]
Nanostructure Schiff base complex based on aromatic  
  polwyamide

7.0 30 17.42 [108]

Ternary HA/Fe–Mn oxides-loaded biochar composite 6.0 25 11.06 [109]

Table 5 Continued

metal ions, which may be attributed to the complexation 
constant of heavy metal ions.

Fig. 14 shows the EDX-mapping before and after adsorp-
tion of Cr(VI), Cu(II), Pb(II), and Cd(II). Before adsorption, 
as shown in Fig. 14a, the elements Fe, C, and O mainly 
existed in the original FeOOH@Microalgae. After adsorption, 
Cr(VI), Cu(II), Pb(II), and Cd(II) was detected, which further 
confirmed that the Cr(VI), Cu(II), Pb(II), and Cu(II) were 
adsorbed on the surface of FeOOH@Microalgae. In addition, 
the ion distribution content was consistent with the adsorp-
tion data.

3.4. Desorption studies

The use of adsorbent in the adsorption process not 
only depends on the adsorption capacity but also on 
the reusability of the adsorbent. Generally, the excellent 

regeneration of adsorbents is an important index to ensure 
low adsorbents costs [112–114]. To investigate the reus-
ability of FeOOH@Microalgae, desorption experiments 
were performed with different desorption solutions. Fig. 
15 shows the desorption efficiency of FeOOH@Microalgae 
in different desorption solutions, and the adsorption and 
desorption process of different cycle times in different 
desorption solutions. The results showed that the desorp-
tion efficiency of 0.01M HNO3 was the highest, and the 
removal efficiency of Cr(VI) can remain over 90% after 
the fifth cycle. However, with an increase of the number 
of cycles, the removal efficiency slightly decreased, which 
may be attributed to the loss of adsorbents in the adsorp-
tion process and the irreversible binding between metal 
ions and adsorbents [115]. A similar trend was observed for 
the desorption of Cu(II), Pb(II), and Cd(II). After desorption 
of 0.01 M HCl, 0.01 M HNO3, 0.01 M H2SO4, and 0.01 M HCl, 
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the desorption efficiencies of Cu(II), Pb(II), and Cd(II) were 
higher, and the desorption trend was similar to that of Cr(VI) 
in the optimal desorption solution. The results indicated 
that FeOOH@Microalgae showed excellent reusability and 
metal ion removal effect and could be reused in practical  
application.

3.5. Practical application in wastewater

To test the environmental application of FeOOH@
Microalgae, experiments were conducted on samples of heavy 

metal wastewater from a factory. The 50 mg of FeOOH@
Microalgae was mixed with a 50 mL wastewater sam-
ple in a 150 mL conical flask. The supernatant was sepa-
rated after 60 min of adsorption; the ion concentration of 
the supernatant was determined using ICP. As shown in 
Fig. 16, FeOOH@Microalgae showed an adsorption efficiency 
of greater than 80% for all four ions, especially for Pb(II) 
(92.5%), which suggested that FeOOH@Microalgae showed 
good adsorption effect for wastewater treatment and hence, 
can be potentially employed as a highly effective adsor-
bent in industrial practice.

 
Fig. 11. (a) Adsorption efficiency of Congo red and (b) UV-vis absorption spectra of Congo red solutions treated by FeOOH@
Microalgae (initial concentration of Congo red is 50 mg L−1).

Fig. 12. FTIR spectra of the products before and after adsorption of heavy metals. (a) and (b) represent the FeOOH@Microalgae 
andmicroalgae powder.



J. Wang et al. / Desalination and Water Treatment 191 (2020) 263–284278

4. Conclusions

FeOOH@Microalgae, which was a composite material, 
was synthesized at different reaction temperatures (70°C, 
60°C, and 50°C). The products combined the high adsorption 
property of both microalgae and FeOOH, which produced 
a better adsorption effect for metal ions compared with the 
individual use of microalgae or commercial FeOOH and 
traditional absorbents. The material was characterized by 

XRD, FTIR, SEM, TEM, and XPS. The results indicated that 
microalgae were well immobilized by FeOOH, thus not only 
retaining the crucial functional groups of microalgae, which 
had a key role in adsorption, but also forming unique func-
tional groups. According to the dynamic study, adsorption 
equilibrium can be reached within 180 min; the adsorption 
process obeyed the pseudo-second-model and the membrane 
diffusion process was employed as the rate control step. 
The sorption data fitted well with the Langmuir adsorption 

 

Fig. 13. (a–d) SEM images and EDX spectra of FeOOH@Microalgae after adsorption of (a-1) Cr(VI), (b-1) Cu(II), (c-1) Pb(II), and 
(d-1) Cd(II).
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Fig. 14. SEM and EDX-mapping of (a) FeOOH@Microalgae, (b) FeOOH@Microalgae-Cr(VI), (c) FeOOH@Microalgae-Cu(II), 
(d) FeOOH@Microalgae-Pb(II), and (e) FeOOH@Microalgae-Cd(II).
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Fig. 15. Effect of different eluents on (a) Cr(VI), (b) Cu(II), (c) Pb(II), and (d) Cd(II) desorption. Adsorption–desorption cycles of (a-1) 
Cr(VI), (b-1) Cu(II), (c-1) Pb(II), and (d-1) Cd(II) on FeOOH@Microalgae [for Cr(VI): adsorbate concentration = 40 mg/L, pH = 3.0, 
desorption volume = 20 mL and for Cu(II), Pb(II), and Cd(II): adsorbate concentration = 40 mg/L, pH = 5.3, desorption volume = 20 mL].
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model; therefore, the adsorption of Cr(VI), Pb(II), Cu(II), 
and Cd(II) on FeOOH@Microalgae was mainly homoge-
neous and single-layer in nature. The maximum adsorption 
capacities of FeOOH@Microalgae for four metal ions were 
31.06, 54.04, 40.62, and 30.83 mg g–1. FeOOH@Microalgae 
also showed high adsorption ability for Congo red with an 
adsorption mechanism related to the electrostatic action 

(carboxyl and hydroxyl groups binding to the metal surface), 
cation exchange, and complexation. These results suggested 
that FeOOH@Microalgae can be considered as a potential 
absorbent for the removal of heavy metals and Congo red 
from wastewater.
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Symbols

qe — Equilibrium amount adsorption capacity, mg g–1

qt —  Dynamic (at time t) amount adsorption capacity, 
mg g–1

k1 —  Rate constants of pseudo-first-order (min−1) 
adsorption

k2 —  Rate constants of pseudo-second-order 
(g mg−1 min−1) adsorption

ce —  Equilibrium concentration of total ion in the 
solution, mg L−1

qe — Maximum adsorption capacity, mg g−1

KL — Langmuir constant
KF — Freundlich constant
1/n — Freundlich empirical parameter
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