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a b s t r a c t
Water quality parameters help to decide the further use of water-based on its quality. Changes 
in water surface area in the lake shall affect the water quality. Chlorophyll a, nitrate concentration 
and water turbidity were extracted from satellite images to record each variation on these parameters 
caused by the water amount in the lake changes. Each water quality measures have been recorded 
with its surface area reading to analyses the effects. Water quality parameters were estimated from 
the Sentinel-2 sensor based on the satellite temporal resolution for the years 2017–2018. Data were 
pre-processed then processed to estimate the maximum chlorophyll index (MCI), green normalized 
difference vegetation index (GNDVI) and normalized difference turbidity index (NDTI). The nor-
malized difference water index (NDWI), was used to calculate and record the changes in the water 
surface area in Baysh Dam Lake. Results showed different correlation coefficients between the lake 
surface area and the water quality parameters estimated remote sensing data. The response of the 
water quality parameters to surface water changes was expressed in four different surface water 
categories. MCI is more sensitive to surface water changes rather than GNDVI and NDTI. Neural 
network analysis showed a resemblance between GNDVI and NDTI expressed in sigmoidal function 
while MCI showed a different behavior expressed in exponential behavior. Therefore, monitoring of 
the surface water area of the lack is essential in water quality monitoring.
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1. Introduction

Water bodies in lakes and dams pools exposed to many 
factors that affect the water quality; the climate changes dis-
turb the water’s temperatures and that leads to an increase 
or decrease in the evaporation rate which plays a big role in 
pollutant concentrations. The ecosystem of Wadi of Baysh 
contains a considerable amount of vegetation form and 

a large number of trees; in the rainy season, most of that 
ecosystem was submerged by water [1,2].

The organic marital from inside the lake is affecting the 
water quality. Also, runoff possibly will transport leaves 
and wooden pieces to dam’s lake as well as the sediment 
particle which is the driving force of lake water turbidity 
[3,4]. The amount of these organic marital in the lake is a 
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fundamental part of the living organisms in the dam lake 
including bacteria and algal live cycles [5].

For seeking knowledge, losing 1,000 m3 of freshwater is 
not a disaster. Nevertheless, keeping around 140 million m3 
of rainwater for microorganisms and algae to grow could be 
a catastrophe. Throughout history, small polluted pools were 
responsible for hundreds of deaths. The rainwater at the 
end of any watershed contains many elements and organic 
materials [6,7].

Microorganisms consume organic material and deoxi-
dized the water. After that, the green algae start to grow and 
creating visible layers over the surface, some kinds of these 
algae generate toxic gases and pollute all the water bodies [8].

If the lake at Baysh Dam starts to develop such harmful 
algae colonies on its surface in the presence of sunlight and 
shortage of rainfalls, the development of harmful algae could 
be uncontrolled and pollutes the soil and groundwater [9].

In some cases, the change in the water quality measures 
could be minor and unnoticeable, but with continuity and 
time, the water body will get contaminated and then will 
affect the ecosystem around it. Water quality monitor-
ing and pollution prevention are better than having over 
100 million m3 of contaminated water in one location will 
affect the region. Also, it will need huge budgets for future 
treatments [10,11].

Baysh Dam designed to hold 190 million m3 within a 
surface area of 8 km2; the area at full capacity. The actual sur-
face area has never been recorded at full capacity for safety 
purposes [12]. The maximum safe operating capacity at 
Baysh Dam is 120 million m3 with a surface area of 4.4 km2; 
at the safe operational level the surface area rapidly changes 
with any inflow or outflow from the dam; rapids change 
happen due to the shape of the Wadi at operational elevation.

The quest for remote sensing applications to monitor 
water quality parameters is required to minimize the human 
efforts to the lowest level [13]. Sentinel-2 sensor developed by 
the European Space Agency (ESA) provides data with high 
spatial resolution and equipped to practice models to detect 
water quality parameters. A most recent study on Sentinel-2 
shows that the most accurate algorithm to acquire the high-
est reflectance for normalized difference water index (NDWI) 
coming from bond 5 and bond 3 [14].

Sentinel-2 bands were used to record the surface area of 
the lake and to develop a model to detect chlorophyll and 
nitrogen concentrations with low root mean squared error 
[4,15]. Furthermore, the selected satellite occupied with mul-
tispectral imager multispectral instrument (MSI) which stud-
ied and proved in more than one study to be more accurate 
than the moderate resolution imaging spectroradiometer. 
MSI has been used to detect suspended particulate matter in 
the water body and its results were accepted with a wave-
length range of 560 to 780 nm [16].

The main objective of the current study is to monitor the 
effect of the lake surface area on the water quality. Maximum 
chlorophyll index (MCI), green normalized difference veg-
etation index (GNDVI) and normalized difference turbidity 
index (NDTI) will be estimated to represent the water qual-
ity parameters in the dam lake and NDWI will be used to 
delineate the lake surface area. Partition analysis and artificial 
neural network analysis will be used to envisage the water 
surface area’s effect on the estimated water quality parameters.

2. Materials and methods

2.1. Study area

Baysh Dam is located in the western part of the Asir 
Mountains, approximately 100 km north of Jizan City, Saudi 
Arabia (Fig. 1). The dam is in an arid region with a distin-
guished difference in temperatures which has a huge effect 
on algae growing and oxygen dissolving eutrophication 
processes. The dam is constructed for flood control, irriga-
tion of farmland and groundwater recharge. Also, there is a 
water treatment plant located about 5 km from Baysh Dams’ 
gates. The plant operates in two phases, the first phase is the 
conventional water treatment and the second phase is the 
reverse osmosis water treatment plant. The water treatment 
plant produces 70,000 m3/d of irrigating water and been 
managed and used by the Ministry of Environment water 
and agriculture. The catchment area of the dam is more 
than 4,000 km2 [3,6]. The turbidity of the dam lake is accept-
able as much as the water volume behind the dam is over 
80 million m3 [4]. On the other hand, the water treatment 
plant requires low turbidity to operate in normal mode so 
the dam’s authority in Jazan opens the dam gates to lower 
the water level for safety sake and not to decrease it less 
than 80 million m3 in order to get low turbidity water for 
the treatment plant.

2.2. Remote sensing data collection

Data collection started in January 2017 and last until 
December 2018 on a temporal resolution of the satellite 
instrument which resulted in 52 scenes in total. The sen-
sor is made of 12 spectral bands, 3-visible bands (VI) with 
10 m resolution, 5-vegetation red edge (VRE) and infrared 
(IR) bands of 20 m resolution of and 2-short-wave infra-
red (SWIR) bands 60 m resolution in addition to 3 bands 
related to coastal aerosols and water vapor of 60 m resolu-
tion. ESA two levels of treated images which are 1B and 1C 
[17]. Level 1C been used in this paper because 1C images 
contain radiometric and geometric corrections. The geodetic 
system for level 1C images is WGS84 [18].

2.3. Realization of water quality parameters

Three different remotely sensed indices were obtained to 
represent three different water quality parameters, the MCI, 
GNDVI, and NDTI. The water quality parameters of MCI, 
GNDVI, and NDTI were realized according to Matthews et 
al. [19], Gitelson and Merzlyak [20] and Lacaux et al. [21] 
respectively. Detailed exercises of the water quality parame-
ter realizations were discussed in Elhag et al. [4]. While the 
NDWI was found by Gao [22] Then improved by Ganaie 
et al. [23] to measure the liquid water molecules at the top 
of the canopy level. NDWI is calculated by the following 
equation:

NDWI NIR SWIR
NIR SWIR

=
−
+

 (1)

where NIR is Sentinel-2 near-infrared band; SWIS is Sentinel-2 
short-wave infrared band.
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2.4. Regression analysis

The regression analysis is the practice of creating a 
curve, or mathematical function that has the best fit to a 
series of data points, possibly subject to constraints. There 
are several fitting functions and there is no general best fit. 
The best fit is a data dimension and mathematical function 
dependent [24–27].

In order to describe the effect of the surface area on the 
water quality parameters at the dam’s lake, relations between 
different surface water areas and water quality measures 
must be examined. The scatter plot has been conducted on 
both variables to visualize the connection between water 
surface area and the quality parameters. The readings of 
the water quality measures are independent variables, also, 
the calculated area values are independent. In this case, the 
principal component analysis, neural network analysis, and 
partition analysis are the verified methods of exploring the 
relationship between two independent variables [28,29].

2.4.1. Principal component analysis

Principle component analysis (PCA) is performed to 
transform a set of likely correlated with unlikely correlated 
variables. Principal components number is less/equal to the 
variable’s original number. Following Monahan [30], PCA 
fundamental equations are:

First vector w(1) should be answered as follows:

w t x ww
i

i w
i

i1 1 1

2

1

2

( ) = ( ) == ( )






= ×( )








∑ ∑arg max arg max  (2)

The matrix form of the above equation gives the following:
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w(1) should be answered as follows:
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arg max  (4)

Originated w(1) suggests that first component of a data 
vector x(i) can then be expressed as a score of t1(i) = x(i) × w(1) in 
the transformed coordinates, or as the corresponding vector 
in the original variables, (x(i) × w(1)) w(1).

2.4.2. Neural network analysis

The neural network regression model is written as:

Y w w X
h

h h h
i

p

ih i= + +








∑ ∑

=

α φ α
1

 (5)

  
Fig. 1. Location of the study area [4].
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where Y = E(Y|X).
This neural network model has one hidden layer, but 

it is possible to have additional hidden layers. The φ(z) the 
function used is the hyperbolic tangent activation function. 
It’s used for logistic activation for the hidden layers.

φ z z e
e

z

z( ) = ( ) = −
+

−

−
tanh 1

1

2

2  (6)

It is significant that the final outputs to be linear not to 
constrain the predictions to be between 0 and 1. The equa-
tion for the skip-layer neural network for regression is shown 
below:

Y X w w X
i

p

i i
h

h h h
i

p

ih i= + + +










= =
∑ ∑ ∑α β φ α

1 1

 (7)

Cross-validation is therefore critical to make sure that the 
predictive performance of the neural network model is ade-
quate. Recall the skip-layer neural network regression model 
looks like this:

Y X w w X
i

p

i i
h

h h h
i

p

ih i= + + +










= =
∑ ∑ ∑α β φ α

1 1  (8)

2.4.3. Partition analysis

The partition methods used to contribute all the condi-
tions to the main function of this paper. Each quality parame-
ter in the lake has its characters and conditions, consequently, 
the changes in the surface area affect each parameter in a 
special way which been explained throughout the partition 
analysis [31].

Euler invented a generating function which gives rise to a 
recurrence equation in P(n) Berndt [32],

P n
n

n k P k
k

n

( ) = −( ) ( )
=

−

∑
1

0

1

1σ  (9)

where σ1(n) is the divisor function as well as the identity.
A recurrence relation involving the partition function Q 

is given by Hirschhorn [33]:

P n Q n k P k
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=
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2
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/

 (10)

3. Results and discussion

Changes in the lake’s surface area have a clear effect on 
the dam’s water quality. As the surface area and remotely 
sensed water quality values been collected from satellite 
images, the relation between these two is water surface area 
dependent. Whenever the surface area of the dam’s lake 
changes, the water quality of the dam lake got affected. Even 
though, the effect on the MCI values is weak but has the 
same inverse relation with surface area [34].

3.1. Regression analysis

Regression results showed that mean pixel values 
were the best to present the coherent association between 
the water quality parameters and the remotely estimated 
surface area. Changings in the surface area effect each water 
quality parameter in a slightly different way. MCI, GNDVI, 
and NDTI were the main quality parameters in this study. 
Fig. 2 shows a robust correlation of MCI mean pixel val-
ues (R2 = 0.94) with the dam lake surface area in km, also, 
it clarifies the positive connections of the MCI mean values. 
The same processes were conducted on GNDVI and NDTI 
values to find and represent the correlation between the vari-
ables. R2 for the GNDVI and NDTI mean values are counted 
for 0.95 each.

3.1.1. Principal component analysis

Root mean square error (RMSE) was conducted to con-
firms the association between the mean value of the in-situ 
water quality measurements and the conducted values from 
remote sensing data according to the summary of the fit 
analysis. the effect of the area change has a clear on NDTI 
with very minor on the other components, MCI and GNDVI. 
But with a separate analysis for each quality measure, more 
than 95% of the quality values are responding positively 
with the decreased surface areas [35]. The direction and 
magnitude of the mixed connection between the quality 
measures and the change of the surface area are described 
in Fig. 3. The separated analysis of the quality data could 
be misguided because of the outlier numbers. Also, each 
quality parameter has its correlation line, which is different 
than the other parameter [36,37].

MCI has its own in response to the dam lake surface 
area changes rather than GNDVI and NDTI. This finding 
is also supported by the neural network analysis showed 
in Table 1, where there the prediction profile of the MCI 
expresses an exponential trend while GNDVI and NDTI 
express a sigmoidal trend.

3.1.2. Neural network analysis

The total number of contributed values which injected 
in the neural network is 51 values using 1 hidden layer and 
two nodes as shown in Fig. 4. The hidden layer on this neu-
ral network is sensitive to the change in surface area. As a 
result of the quality parameters, it is promising results with a 
very low percentage error.

The MCI values have a percentage error of less than 
0.0012%, and the regression line of the points [38] has an 
R2 value of 0.977. The predicted values of MCI with the 
measured data generate an exponential data line which 
clarifies the connection between the water surface area and 
MCI concentration at Baysh Dam [4,14].

The sigmoidal function is shown in Table 1 for the 
GNDVI and NDTI values, the regressing lines interact 
inversely with surface area changes but not in an exponen-
tial manner as the concentration of chlorophyll does. For 
nitrogen concentration, the number of points used in this 
specific neural network is 34 readings with an R2 value of 
0.953. The total number of the nitrogen reading is 51, but 
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Fig. 2. MCI, GNDVI, and NDTI mean pixel value (Y-axis) correlation with the dam lake surface area (X-axis).
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Table 1
Neural network analysis for the remotely sensed water quality parameters

Model NTanH(2)

MCI Prediction profiler

Training Validation

Measure Value Measure Value

R-Square 0.9672577 R-Square 0.9773973
RMSE 2.3554e-5 RMSE 1.1815e-5
Mean Abs. Dev. 1.6821e-5 Mean Abs. Dev. 1.0164e-5
Log-likelihood –314.0673 Log-likelihood –168.7629
SSE 1.8863e-8 SSE 2.373e-9
Sum Freq. 34 Sum Freq. 17

GNDVI

Training Validation

Measure Value Measure Value

R-Square 0.9533811 R-Square 0.9692365
RMSE 0.0011226 RMSE 0.0006122
Mean Abs. Dev. 0.0007773 Mean Abs. Dev. 0.000501
Log-likelihood –182.6876 Log-likelihood –101.6521
SSE 4.2848e-5 SSE 6.3711e-6
Sum Freq. 34 Sum Freq. 17

NDTI

Training Validation

Measure Value Measure Value

R-Square 0.9507846 R-Square 0.9824817
RMSE 0.0006395 RMSE 0.0002676
Mean Abs. Dev. 0.0004335 Mean Abs. Dev. 0.0002
Log-likelihood –201.8175 Log-likelihood –115.7203
SSE 0.0000139 SSE 1.2174e-6
Sum Freq. 34 Sum Freq. 17

 
Fig. 3. Principle component analysis of the remotely sensed water quality parameters.
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34 were used to keep 17 values for validation of the results 
from the neural network. For the water turbidity, R2 for the 
measured value is 0.95 and for the predicted values is 0.98; 
for the same parameter, RMSE is 0.00026. The validation 
process for all parameters is presented in Table 1.

3.1.3. Partition analysis

The surface area values were divided into four area 
levels to emphasis on minor changes in the water quality 

parameters (Fig. 5). The effect on the chlorophyll concentra-
tion was minor because of the interaction with other factors. 
But the effect is trackable and notable. There are four splits in 
the partition analysis based on the LogWorth statistics. The 
decision tree showed unevenness in surface area splits affect-
ing the MCI indicating the later sensitivity to the surface 
area [34,39]. The surface area of 3.28 km2 has the maximum 
LogWorth value (4.99) pointing out the optimal split [39].

The same procedures were conducted on the GNDVI 
and NDTI illustrated in Figs. 6 and 7 respectively. Although 

 
MCI

Area
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Fig. 4. A neural network, the interaction of area changes on all parameters as one effect, and the interconnection among the variables.
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Fig. 5. Decision tree for MCI values with different surface area splits.
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Fig. 6. Decision tree for GNDVI values with different surface area splits.
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Fig. 7. Decision tree for NDTI values with different surface area splits.
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GNDVI and NDTI showed decision tree evenness with 
four splits, the optimum LogWorth values counted for 23.7 
and 15.63 correspondingly at the same surface area split 
(3.28 km2). Such finding supports the vulnerability of nitro-
gen concertation towards lake surface area changes [40]. 
Therefore, monitoring the dam lake surface area based on 
the LogWorth statistics is very crucial. In the current study, 
the lake surface area of 3.28 km2 demonstrated to be critical 
to the estimated water quality parameters.

4. Conclusions

Changes in the lake’s surface area have a clear effect on 
the turbidity of the Dam’s water. As the surface area and 
NDTI values been collected from satellite images, the rela-
tion between these two is proportionally related. Whenever 
the surface area of the dam’s lake increases, the turbidity of 
the water decreases. Even though, the effect on the MCI val-
ues is weak but has the same consistency relation with the 
surface area. The surface area of the lake surface is a supple-
mentary expression of the water amount in the Baysh Dam. 
With the analysis of water quality parameters in the last two 
years, the relation between the amount of water expressed in 
this study as the water surface area and the chlorophyll con-
centration, nitrogen concentration, and the sedimentation 
process is a corresponding relation. Nevertheless, chloro-
phyll concentration expressed a sensitive behavior to 
changes in the lake surface while nitrogen concentration and 
turbid-ity expressed more steady behavior.
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