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a b s t r a c t
Preparation of the adsorbent was performed by pyrolysis carbonization and followed by potassium 
hydroxide (KOH) activation of Camellia oleifera shell under the nitrogen atmosphere. Through the 
thermogravimetric–derivative thermogravimetric analysis, the range of carbonization temperature 
was set from 300°C to 400°C increased 50°C at a time. The optimum carbonization and activation 
conditions were investigated by the orthogonal experiment. The activated carbon was characterized 
by scanning electron microscopy, Brunauer–Emmett–Teller, and Fourier transform infrared spec-
troscopy. The adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by C. oleifera 
shell activated carbon was carried out with batch adsorption experiments. The effects of initial pH 
value, adsorbent dosage, the temperature on the adsorption were studied. The results indicate that 
the activated carbon is an effective adsorbent with a high surface area (1,585.60 m2/g) and a large 
pore volume (1.055 cm3/g). The adsorption process follows the pseudo-second-order kinetic model. 
The adsorption equilibrium data obtained at 25°C, 35°C, and 45°C fit better with the Freundlich 
model than Langmuir model and the thermodynamics parameters, ΔH°, ΔS°, and ΔG° were calcu-
lated. It indicates that the process of Cr(VI) adsorption on activated carbon is entropy-driven and 
endothermic. The results illuminate that C. oleifera shell activated carbon is an effective adsorbent 
for adsorbing Cr(VI) from aqueous solutions.
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1. Introduction

Heavy metals in wastewater are a truly big environ-
mental pollution problem due to the properties of their 
non- degradability and accumulation in organisms [1]. 
Hexavalent chromium (Cr(VI)) ion, one kind of the heavy 
metals, is widely detected in wastewater discharged from 
various industrial processes, for instance, electroplating 
industries, oil refining, and metallurgy industry [2,3]. Cr(VI) 

is widely known to be poisonous to most life in the earth, 
even at low concentrations [4].

There are many methods for the treatment of waste-
water with Cr(VI), such as photocatalytic reduction [5,6], 
electrochemical reduction [7], membrane filtration [8], and 
adsorption [9,10]. Among them, physical adsorption is the 
common method to remove Cr(VI) in the wastewater due 
to its easy operation, high-efficiency, and inexpensive [11]. 
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Various kinds of adsorbents have been studied on the 
removal of Cr(VI), such as mesoporous silica [12,13], cellu-
lose [14], graphene [15], polymeric adsorbent [16], activated 
carbon [17], etc.

Activated carbon is known as one kind of effective 
adsorbent because of its high specific surface area and 
large pore volume. It is confirmed that many agricultural 
waste materials can be used to prepare activated carbon, 
such as tea leaf [18], cotton processing wastes [19], sawdust 
[20], the residue of rice husk [21], cow manure [22], grape 
bagasse [23], Camellia oleifera shell [24], etc. C. oleifera shell 
is a typical agricultural waste material among camellia oil 
production and is an appropriate raw material to prepare 
activated carbon [25].

Thermogravimetric analysis (TG) has long been used to 
study the thermal behavior of organic matters. Carbonization 
is an important step of the preparation of activated carbon. 
Through the pyrolysis of raw materials, carbide with ini-
tial pores and certain mechanical strength can be obtained, 
which was conducive for activation.

In this study, TG analysis was applied to confirm the 
temperature range of the carbonization. The activated car-
bon was synthesized by C. oleifera shell and characterized 
by scanning electron microscopy (SEM), Brunauer–Emmett–
Teller (BET), and Fourier transform infrared spectroscopy 
(FT-IR). The efficiency of activated carbon on the adsorp-
tion removal of Cr(VI) ions from aqueous solutions was 
also evaluated. Preparation of the adsorbent was performed 
by pyrolysis carbonization and followed by KOH activa-
tion of C. oleifera shell under the nitrogen atmosphere [2]. 
Solution pH, adsorbent dosage, absorption temperature, 
and contact time, were studied to investigate their effects 
on the process of Cr(VI) adsorption in the aqueous system. 
Moreover, kinetics and isotherms of Cr(VI) adsorption were 
also investigated.

2. Experimental

2.1. Materials

C. oleifera shell were obtained from Ganzhou in China, 
which were dried in sunshine; K2Cr2O7 (≥99.8%), 1,5-diphenyl-
carbazide, potassium hydroxide, potassium bromide, and 
sulfuric acid were purchased by Sinopharm Chemical 
Reagent Co., Ltd., (Shanghai, China), with all chemicals of 
analytical grade or above and used as received. Deionized 
water was obtained using a Millipore Milli-Q ultrapure 
water system (Bedford, MA, USA).

2.2. Analysis method

The concentrations of Cr(VI) ions were measured by 
the colorimetric technique coupled to UV-Vis spectros-
copy (Model 7200, Shanghai Unico Instrument Co., Ltd., 
Shanghai, China) at 540 nm. The standard curve of Cr(VI) 
concentration (y, mg/L) to absorbance (x) was obtained as 
follows: y = 1.4160x + 0.0057, the scope of x is 0 – 0.7, and the 
determination coefficients of the curves was 0.9994.

2.3. Preparation of activated carbon adsorbents

The C. oleifera shell were adequately cleaned in distilled 
water and dried at 105°C for 10 h by an electric thermostat  
blast dryer (model DHG 9076A, Shanghai Jinghong 
Laboratory Instrument Co., Ltd., Shanghai, China). After 
that, they were crushed by a high-speed multifunction 
grinder (model DS-T250, Shanghai Dingshuai Instrument 
Co., Ltd., Shanghai, China) and separated to the size of 
100 mesh with sieves. A mass of 100 g of the powder was 
carbonized under N2 atmosphere at 300°C–400°C for 1 h in 
a box-type resistance furnace (model SX2-4-10, Shanghai 
Experiment Instrument Co., Ltd., Shanghai, China). Then 
the char produced from the carbonization process was mixed 
with potassium hydroxide (KOH) with a 1:(1–3) (w/w) ratio. 
The mixture was then activated under N2 atmosphere at 
600°C–800°C for 0.5–1.5 h. They were cooled, then washed 
with distilled water to neutral, and dried at 100°C for 24 h. 
Then, the C. oleifera shell activated carbon was obtained 
and stored in desiccators for use in adsorption studies.

In order to optimize the preparation process of C. oleifera 
shell activated carbon, an orthogonal experimental design 
L9(34) was used as listed in Table 1. The mass ratio of KOH 
to carbonized material, activation time, activation tem-
perature, and carbonization temperature were set as four 
influencing factors. The values of each parameter were 
chosen as follows in Table 1. The equilibrium adsorption 
capacity of Cr(VI) on C. oleifera shell activated carbon were 
set as the test index of the orthogonal experiment.

2.4. Characterization

Thermo-gravimetric analysis of the powder crushed 
by C. oleifera shell (raw powder) was performed by ther-
mal gravimetric analyzer (NETZSCH TG 209 F3 Nevio, 
Germany). Surface morphology of the activated carbon 
prepared from C. oleifera shell was studied by scanning elec-
tron microscope (Hitachi S-4800, Japan) in order to make 

Table 1
Orthogonal experimental design L9(34) on the preparation of activated carbon

Factor  
levels

A (carbonization  
temperature/°C)

B (activation  
temperature/°C)

C (KOH/carbonized  
material ratio)

D (activation 
time/h)

1 300 600 1 0.5
2 350 650 2 1
3 400 700 3 1.5
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a comparison with raw C. oleifera shell surface before the 
treatment. FT-IR analysis was applied to determine the 
functional groups present on the surface of C. oleifera shell 
activated carbon before and after adsorption by using FT-IR 
spectroscopy (Thermo Scientific Nicolet iS50, USA) with a 
potassium bromide pellet. The spectra were recorded from 
4,000 to 500 cm−1. BET specific surface area and pore size 
were measured by using an automatic surface analyzer 
(Quantachrome Autosorb-iQ, USA).

2.5. Adsorption experiments

A mass of activated carbon was added to 100 mL of 
Cr(VI) solutions with the desired concentration in a 250 mL 
conical flask. These suspensions were adjusted to required 
pH value with 0.1 N HCl or NaOH, and then shaken in an 
air bath constant temperature oscillator (model THZ-C, 
Taicang Huamei Instrument Co., Ltd., Suzhou, JiangSu, 
China) at 175 rpm and constant temperatures. A small 
amount of solutions marked as samples were withdrawn 
at various time intervals and centrifuged at 9,000 rpm 
for 5 min. The absorbances of samples were measured 
using the spectrophotometer until the equilibriums were 
achieved. The adsorption capacity, (Qt, mg/g), was deter-
mined as being the difference between the initial dichro-
mate concentration (C0, mg/L) and the concentration at a 
specific time (t) or at equilibrium (Ct, mg/L), per gram of 
solid adsorbent, as outlined by Eq. (1):

Q C C V
mt t= −( )×0  (1)

where m is the mass of adsorbent (g); and V is the volume 
of solution. The removal percentage (R%) of Cr(VI) was 
calculated using Eq. (2):

R
C C
C

t(%) =
−( )

×0 %
0

100  (2)

2.6. Adsorption kinetics experiments

Adsorption kinetics analysis of Cr(VI) onto activated car-
bon were performed in each conical flask. A known amount 
of activated carbon (0.10 g) was placed inside the flask and 
100 mL of solution with 500 mg/L of Cr(VI) at pH 1 was 
poured into the flask. The mixtures were then oscillated in 
175 rpm at 25°C, 30°C, 35°C, and 45°C. The aliquots were 
removed and centrifuged for analysis at established time 
intervals.

2.7. Isotherm experiments

Equilibrium adsorption isotherms were obtained by 
exposing 100 mL of different initial concentrations of Cr(VI) 
(350, 400, 450, 500, 550, 600, and 700 mg/L), with 0.1 g acti-
vated carbon powders, respectively, until equilibrium was 
attained. Four different temperatures (25°C, 30°C, 35°C, and 
45°C) were investigated and the individual adsorption iso-
therm curves at 25°C, 30°C, 35°C, and 45°C were obtained by 
plotting qt vs. Ce.

3. Results and discussion

3.1. Thermogravimetry–derivative thermogravimetry

Thermo-gravimetric analysis of the powder crushed 
by C. oleifera shell (raw powder) was performed to study 
the process of carbonization as shown in Fig. 1. As can be 
seen from Fig. 1, there were three phases in whole pyrolysis 
process. 35°C–210°C was the first phase. The water including 
absorbed water, free water, and bound water was removed 
from the powder in this phase. In the second stage, sharp 
weight loss of the raw powder occurred at 210°C–500°C 
and the loss ratio was up to 54.2%. The raw powder experi-
enced the thermal decomposition and carbonization during 
the phase. The derivative thermogravimetry (DTG) peaks at 
292°C correspond to the decomposition of hemicelluloses, 
cellulose. Above 370°C–397°C, the lignin began to decom-
pose. The pyrolysis process has completed until 502°C. 
At 502°C–900°C as the third phase, the weight loss curve 
became smooth and slightly. The carbon residue decreases 
to 43.9% at 500°C and 42.3% at 900°C. The residues mainly 
include fixed carbon and ash. It could be concluded from 
the analysis that the pyrolysis process of macromolecu-
lar organic components has completed at around 372°C. 
Finally, the range of carbonization temperature was set from 
300°C to 400°C increased 50°C at a time.

3.2. Orthogonal experimental analysis

The orthogonal experiment analysis on the producing 
activated carbon from C. oleifera shell is shown in Table 2. 
The orthogonal experiment analysis indicates that the mass 
ratio of KOH to carbonized material and activation time 
affects the primary factor on the adsorption capacity of 
Cr(VI), but activation temperature and carbonization tem-
perature were the secondary factors. The optimal condition 
is A3B2C3D2. Under the optimal condition, three times 
of parallel experiments were carried out and the results 
showed that the equilibrium adsorption capacity of Cr(VI) 
could reach 374.77, 368.45, and 370.16 mg/g. The experimen-
tal data are close to each other and better than the date listed 
in the orthogonal experiment. It indicates that the range 
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Fig. 1. TG-DTG of raw Camellia oleifera shell.
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analysis is reliable. Therefore, the C. oleifera shell activated 
carbon would be prepared by the optimum conditions: 
carbonization temperature 400°C, activation temperature 
650°C, KOH/carbonized material ratio 3, activation time 1 h, 
respectively, which was chosen as the suitable absorbent for 
adsorbing Cr(VI) throughout all the remaining adsorption 
experiments.

3.3. Characterization of the activated carbon

3.3.1. Scanning electron microscopy

The SEM results of the precursor and the activated car-
bon samples are shown in Fig. 2. Significant difference of 
surface morphology between the precursor (Fig. 2a) and 
the activated carbon (Fig. 2b) was vividly demonstrated. 
The precursor showed smooth and less porosity, while 

after carbonization and activation, the activated carbon sur-
faces were irregular and rough with lots of newly formed 
pores and cavities. It indicates that the activated carbons 
prepared through carbonization and activated by potas-
sium hydroxide have a higher degree of pore development 
than the precursor as can be seen from Fig. 2b. The result 
indicates that C. oleifera shell activated carbon which has a 
higher surface area and pore volume may be a more effec-
tive adsorbent compared to the raw C. oleifera shell.

3.3.2. Nitrogen adsorption–desorption

N2 adsorption–desorption isotherms and the pore 
size distribution of the activated carbon were presented 
in Figs. 3 and 4, with adsorption data obtained over a 
relative pressure (P/P0) range from 0.05 to 0.99 [26]. The 
average pore diameter was calculated to be 3.930 nm by 

Fig. 2. SEM images of (a) raw Camellia oleifera shell and (b) Camellia oleifera shell activated carbon.

Table 2
Results of orthogonal experiment and analysis

Experiment number A B C D Qe (mg/g)

1 300 600 1 0.5 287.14
2 300 650 2 1.0 300.62
3 300 700 3 1.5 304.88
4 350 600 2 1.5 232.51
5 350 650 3 0.5 327.23
6 350 700 1 1.0 308.07
7 400 600 3 1.0 355.00
8 400 650 1 1.5 279.69
9 400 700 2 0.5 259.47
K1 297.55 291.55 291.63 291.28
K2 289.27 302.51 264.20 321.23
K3 298.05 290.81 329.04 272.36
R 8.78 11.71 64.84 48.87
Optimal condition A3 B2 C3 D2

*A, carbonization temperature/°C; B, activation temperature/°C; C, the mass ratio of KOH to carbonized material; and D, activation time/h.
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the Barrett–Joyner–Halenda (BJH) model, with the pore 
size distribution concentrating in the mesoporous range 
(2–50 nm). The BET surface area, pore volume and aver-
age pore diameter were determined to be 1,585.60 m2/g, 
1.055 cm3/g, and 3.930 nm, respectively. The BET results 
indicate that activated carbon has a high potential as an effi-
cient adsorbent.

3.3.3. FT-IR spectra analysis

The FT-IR spectra of raw material and activated carbon 
are shown in Fig. 5. The characteristic absorption bands at 
around 3,430 cm–1 in raw material indicated the presence 
of O–H group stretching vibrations due to the cellulose, 
hemicelluloses, and lignin contained in the raw material. 
The broad peak at 2,920 cm–1 was associated with C–H 
stretching vibrations which could be related to methyl, 
methylene, and methoxy groups. Bands at 1,732 cm–1 con-
firmed the presence of carboxylic or ester groups. The band 

observed at 1,620 cm–1 was associated with the C=C stretch-
ing vibration of the lignin aromatic ring or C=O stretch-
ing vibration of carboxylic groups. The peak at 1,050 cm–1 
should be attributed to the –OH stretching vibration [25]. 
The FT-IR spectra of activated carbon show that parts of the 
bands decreased even disappeared at the wavenumbers of 
3,430; 2,920; 1,732; 1,620; and 1,050 cm–1. It indicated that the 
organics in the raw material such as cellulose, hemicellulo-
ses, and lignin were decomposed between carbonization and 
activated process [27].

3.4. Effect of pH on adsorption

Solution pH was found to be an important controlling 
parameter in Cr(VI) adsorption processes. The effects of 
initial pH of solution on Cr(VI) adsorption are presented 
in Fig. 6. As seen in Fig. 6, the equilibrium adsorption 
capacity of Cr(VI) decreased from 385.30 to 297.37 mg/g, 
when pH value increased from 2.0 to 7.0, showing that 
lower pH conditions of 2.0–5.0 are favorable for Cr(VI) 
removal using the investigated biochar. Based on the 
findings of FT-IR analysis, it was established that the sur-
face of C. oleifera shell activated carbon contains carbox-
ylic and phenolic hydroxyl groups. The pH dependence 
of Cr(VI) adsorption may be due to changes in the ionic 
state of these oxygen-containing functional groups, as 
well as Cr(VI) speciation [24,28]. As for the Cr(VI), the 
dominant species of Cr(VI) is HCrO4– at lower pH, and 
when the pH increases, HCrO4– is converted to CrO4

2– 
and Cr2O7

2– [29]. At pH conditions below 5, the biochar 
surface is positive charged with H+ ions, which benefits 
the electrostatic attraction between HCrO4– and the sur-
face of biochar [25]. The biochar surface was negatively 
charged under higher pH conditions, which was not sup-
portive to adsorption. Thus, the optimum pH value of 
the experiments in this research was set at around 2.0.

3.5. Effect of adsorbent dose

The adsorption of Cr(VI) on adsorbents was studied at 
different adsorbent doses and the result is shown in Fig. 7. 
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It can be clearly seen from Fig. 7 that with increase in the 
adsorbent dose, removal percentage of Cr(VI) is promoted. 
It may be due to the increase in adsorbent surface area and 
availability of more adsorption sites [30]. When the amount 
of the adsorbent reaches a certain value (more than 0.25 g), 
the removal percentage tends to be stabilized. Enough active 
sites have been provided that may lead to a stabilization of 
removal percentage. But unit adsorption is decreased with 
increase in adsorbent dose. This may be due to overlapping 
of adsorption sites as a result of overcrowding of adsorbent 
particles [31]. The excessive adsorbent dosing with the lim-
ited contaminant concentration in the solution that resulting 
in a large excess of active sites leads to a lower utility of sites. 
Therefore, the suitable adsorbent dosage was selected to be 
0.25 g for Cr(VI) adsorption.

3.6. Effect of adsorption temperature and time

The effect of adsorption temperature and time were 
studied and the results are shown in Fig. 8. Fig. 8 indicates 
that the adsorption capacity is increased rapidly to the 

maximum value in the first 10–40 min and then remained 
almost steady. The first step is rapid and can be attributed 
to the surface adsorption of contaminants onto the adsor-
bent surface; while the following step is slower and relates 
to the adsorption of contaminants onto the inner surfaces of 
the adsorbent [32]. It also could be seen from Fig. 8 that the 
adsorption capacity of Cr(VI) increases with the temperature 
rising from 25°C to 40°C, which indicates that the adsorption 
process of Cr(VI) is endothermic. Similar trends were also 
found with the biosorption of Cr(VI) onto longan seed acti-
vated carbon [2], apple peels activated carbon [33] and PEI 
modified P-doped oil-tea shell [34].

3.7. Adsorption kinetics

Adsorption mechanism depends on the transportation 
process as well as the physical and chemical properties of 
adsorbent, which is important information for designing 
batch adsorption systems [35,36]. In order to analyze the 
adsorption rate behavior of Cr(VI) on adsorbent at differ-
ent temperatures, pseudo-first-order (Eq. (3)) and pseudo- 
second-order models(Eq. (4)) [37,38] was used to evaluate the 
adsorption kinetics.

ln 1 1−








 = −

Q
Q

k tt

e

 (3)

t
Q Q

t
k Qt e e

= +
1 1
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where Qe (mg/g) is the amounts of adsorbate adsorbed at 
equilibrium. k1 (1/min) is the rate constant of pseudo first- 
order model. k2 (g/mg min) is the rate constant of pseudo- 
second-order model.

In order to examine conformity of both models and 
experimental results, the linear plots of ln(1 – Qt/Qe) – t and 
(t/Qt) – t were used for pseudo-first-order and pseudo- second-
order kinetic models, respectively. The data are plotted and 
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shown in Fig. 9. The values of k1, k2, and determination coeffi-
cient R2 obtained from the plots are given in Table 3.

As shown in Table 3, the small determination coefficients 
of the pseudo-first-order model indicate the poor correla-
tion of Cr(VI) adsorption onto C. oleifera shell activated 
carbon. Application of the pseudo-second-order model pro-
vides much better determination coefficients. Furthermore, 
the determination coefficient values for the second- order 
kinetic model were higher than 0.9994. It is clear that 
Cr(VI) adsorption process follows the pseudo-second-order 
kinetic model. Therefore, it can be concluded that Cr(VI) 
adsorption onto the produced carbon consist of chemical 
adsorption due to the fact that the pseudo-second-order 
kinetic model suggests that the adsorption process involves 
chemisorptions mechanism.

The adsorption activation energy was calculated by the 
logarithmic form of the Arrhenius equation as follows.

ln lnk
E
RT

Aa
2 =

−
+  (5)

where T is the absolute temperature (K), R is the gas 
constant (8.314 J/mol K), Ea is the adsorption activation 
energy (kJ/mol), and A is frequency factor.

Pseudo-second-order rate constant was used as an 
adsorption rate constant. Activation energy was calculated 
from the linear plot of Arrhenius equation (R2 = 0.9871) as 
99.070 kJ/mol. Weak van der Waals forces are responsible in 

the case of physical adsorption and its activation energy is 
not more than 4.184 kJ/mol. 99.070 kJ/mol activation energy 
is high and can be an indicator of chemical adsorption or 
reduction reactions.

3.8. Adsorption isotherms

Adsorption isotherms are significant to design the 
adsorption processes, and they also provide adsorp-
tion capacity of the adsorbent under studied conditions. 
Although there are many adsorption isotherms models, 
Langmuir and Freundlich are the most frequently used 
equations in the literature, expressing the nonlinear rela-
tionship between adsorbed metal ion on the adsorbent and 
metal ion in the solution. These two-parameter models are 
simple and give a good description of experimental behav-
ior in a large range of operating conditions [39]. Langmuir 
and Freundlich adsorption isotherm models were exam-
ined to describe adsorption equilibrium at different pH and 
temperature used in this study. The linear forms of these 
models were listed as follows [40].
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Fig. 9. Fitting curves by pseudo-first-order (a) and pseudo-second-order (b) kinetic models for adsorption.

Table 3
Kinetics parameters for adsorption of Cr(VI)

T (°C) Pseudo-first-order kinetic model Pseudo-second-order kinetic model

Qe (mg/g) k1 (min-1) R2 k2 [g/(mg min)] R2 Qe (mg/g)

25 374.10 0.0302 0.9143 0.0004239 0.9994 390.63
30 385.30 0.0263 0.9011 0.0007723 0.9997 392.16
35 426.62 0.0276 0.9798 0.001774 0.9999 429.18
40 473.55 0.0151 0.9459 0.002691 0.9999 471.70
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where Qm (mg/g) is the mono layer adsorption capacity of the 
adsorbent. KL is the Langmuir adsorption constant. KF and n 
are the Freundlich constants, where KF and n represent the 
adsorption capacity and intensity of adsorption, respectively. 
The Langmuir and Freundlich adsorption isotherms are 
displayed in Fig. 10. The values of the Langmuir constants, 
Freundlich constants, and the correlation coefficients are 
listed in Table 4.

As shown in Table 4, the determination coefficients (R2) 
of Langmuir model are all beyond 0.9676, which are higher 
than of Freundlich model at the three different temperatures, 
respectively. Therefore, it is clear that Langmuir model fits 
better to the experimental data than Freundlich model. It 
suggests that the adsorption of Cr(VI) is dominated by the 
mono-layer surface adsorption, and the similar results was 
found by Yang and Han [41].

For the removal of Cr(VI), C. oleifera shell activated 
carbon displays a high removal capacity (374.10 mg/g). 

The results show better performance than many reported 
biomass-derived carbons listed in Table 5 [2]. This suggests 
that high quality activated carbon could be prepared by 
C. oleifera seed shell and be suitable for practical application.

Furthermore, the thermodynamic parameters of Cr(VI) 
adsorption, such as enthalpy change ΔH°, entropy change 
ΔS°, and Gibbs free energy change ΔG°, were calculated 
from the experimental results got at different temperatures 
using the following equations [42]:

lnK H
RT

S
RL= − +

∆ ∆  (8)

∆ ∆ ∆G H T S= −  (9)

The thermodynamic values of ΔH°, ΔS°, and ΔG° were 
determined and are listed in Table 6. As shown in Table 6,  
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Fig. 10. Langmuir (a) and Freundlich (b) isotherm adsorption curves.

Table 4
Correlated parameters of isotherm adsorption model

T (°C) Langmuir model Freundlich model

KL (L/mg) Qm (mg/g) R2 KF n-1 R2

25 0.03606 490.20 0.9676 172.98 0.1693 0.9079
35 0.07581 531.91 0.9842 238.34 0.1401 0.9543
45 0.17528 578.03 0.9950 280.03 0.1463 0.9770

Table 5
Maximum adsorption capacities (qmax) of Cr(VI) for different biosorbents

Adsorbents pH Concentration (mg/L) qmax (mg/g) References

Longan seed activated carbon 3 100 35.0 [2]
Apple peels activated carbon 2 50 36.0 [33]
PEI modified P-doped oil-tea shell 1 600 355.0 [34]
Ni/Al at PAB 2 250 271.5 [42]
Camellia oleifera shell activated carbon 2 500 374.1 Our work
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the negative ΔG° decreases slightly with the increasing 
temperature, which indicates that it is spontaneous in the 
process of the Cr(VI) adsorption on the activated carbon. 
The values of ΔS° are positive which signifies that the 
process of Cr(VI) adsorption on activated carbon is entro-
py-driven rather than enthalpy driven [43]. Moreover, the 
positive value of ΔH° confirmed the endothermic nature of 
the adsorption process and increasing temperature favors 
the adsorption as referred to in 3.6.

3.9. Proposed Cr(VI) removal mechanism

The possible adsorption mechanism of Cr(VI) was sys-
tematic investigated. The FT-IR of C. oleifera shell activated 
carbon before and after adsorption is shown in Fig. 5. 
Comparison of FT-IR spectra of C. oleifera shell activated car-
bon before adsorption (Fig. 5) led to the conclusion that the 
spectra were similar in their whole, however, with changes 
in intensity and shifts of some bands [32]. The peak around 
3,430 cm–1 was observed to shift to 3,440 cm–1 after adsorption 
that corresponds to the O–H stretching. The C=C stretching 
vibration of the lignin aromatic ring or C=O stretching gives 
a peak at 1,620 cm–1 which is shifted to 1,630 cm–1 after fix-
ation of Cr(VI). The peak at 1,050 cm–1 in the C. oleifera shell 
activated carbon spectrum before Cr(VI) adsorption, which 
is due to the –OH stretching, is moved to 1,090 cm–1 after 
adsorption. The functional groups which have been shifted 
after adsorption of Cr(VI) are involved in the adsorption of 
this latter. Herein, these observations could be concluded 
that O–H, C=C, C=O, –OH groups are involved in the bind-
ing of Cr(VI) with C. oleifera shell activated carbon.

To sum up, the adsorption mechanisms of Cr(VI) on 
C. oleifera shell activated carbon might be synergistic effects 
as follows [26,34]: (1) the electrostatic attraction, according 
to the pH effect on Cr(VI) adsorption; (2) reduction and pre-
cipitation, considering the significant difference of FT-IR 
spectra analysis on before and after adsorption; (3) physical 
adsorption on the basis of porous structures of C. oleifera shell 
activated carbon.

4. Conclusions

• Through the TG-DTG analysis, the range of carboniza-
tion temperature was set from 300°C to 400°C increased 
50°C at a time.

• The activated carbon could be synthesized from C. oleifera 
shell with potassium hydroxide. According to the orthog-
onal experiment, the results show that the optimum 
carbonization conditions are as follows: carbonization 
temperature of 350°C, activation temperature of 600°C, 
KOH/carbonized material ratio of 3, and activation time 

of 1 h, respectively. The surface of the activated carbon 
has a higher surface area and pore volume than the raw 
material shown by SEM images.

• The batch experiments indicate that the optimum pH 
value is 2, the suitable adsorbent dosage is 0.25 g, and the 
adsorption capacity increases with the rising of tempera-
ture. The adsorption process follows the pseudo- second-
order kinetic model and fits better to the Langmuir 
model. The process of Cr(VI) adsorption on activated 
carbon is entropy-driven and endothermic.

• All the findings demonstrate that biochar prepared by 
C. oleifera shell with KOH activation can be an effec-
tive and efficient adsorbent for Cr(VI) adsorption in 
aqueous solution.
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