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a b s t r a c t
Novel visible-light active α-Bi2O3/ZnO doped β-Bi2O3 (ZB) photocatalyst was synthesized at differ-
ent temperatures 400°C (ZB4), 500°C (ZB5), and 600°C (ZB6) by modified sol–gel method. The struc-
tural, morphological, compositional, and optical properties of synthesized photocatalyst were 
characterized using X-ray powder diffraction, field emission scanning electron microscopy, energy 
dispersive X-rays spectroscopy, Fourier transform infrared spectroscopy, and UV-vis spectroscopy. 
With an increase in calcination temperature, the bandgap of the prepared photocatalyst increases, 
and metastable β-phase Bi2O3 changes to α-phase. The photocatalytic activity was evaluated using 
Alizarin Red S (ARS) as a model organic compound. The rate of degradation was estimated from 
residual concentration spectrophotometrically. The results revealed that with an increase in calcina-
tion temperature, the photocatalytic activity of synthesized ZB photocatalyst decreases. Maximum 
decolorization efficiency (88%) was shown by the photocatalyst prepared at 400°C which is 29% 
and 37% higher than that of photocatalyst prepared at 500°C and 600°C, respectively.
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1. Introduction

Inorganic semiconductor-based photocatalysis has 
emerged as a “green” technology for the photocatalytic deg-
radation of recalcitrant organic water pollutants [1,2]. Many 
semiconductor metal oxides such as TiO2, ZnO, Bi2O3, WO3, 
Nb2O5, CuO, MgO, Fe2O3, SnO2, UV/Fe2O3, Fe2O3/sunlight 
[3–7], and metal sulfides such as ZnS, CdS, Bi2S3 [8–10] have 
been employed as photocatalyst for pollutants degradation. 
Among them, TiO2 and ZnO have been extensively used as 
photocatalysts due to their excellent optical and electronic 

properties [11–13]. But, TiO2 and ZnO can be stimulated by 
ultraviolet (UV) light due to their wide bandgap (3.37 eV) 
and this factor greatly limits their photocatalytic applica-
tion under visible light irradiations [14–16]. Bi2O3 is another 
widely used photocatalyst, exists in six crystallographic 
polymorphic forms symbolized as α-, β-, γ-, δ-, ε-, and ω and 
has bandgap ranging from 2.0 to 3.96 eV depending upon 
the crystalline phase formed [17–21]. But Bi2O3 shows poor 
photocatalytic activity due to hasty recombination of the 
photoinduced electron-hole pairs [22,23].
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The photocatalytic activity of Bi2O3 is improved by 
doping with metal ions. Doping of semiconductor oxides 
helps to increase the lifetime of photogenerated electrons 
and holes which acts as trapping centers close to the con-
duction band [24]. Bi2O3 doped with transition metal (Pb+2, 
V+5, Ag+1, and Co+2) showed higher photocatalytic activ-
ity than bare Bi2O3 under visible light [25]. The metastable 
β-Bi2O3 has been proved to be the best photocatalytic crys-
talline form due to its lower bandgap energy (~2.5 eV) [26]. 
Photocatalytic activity of β-Bi2O3 can be further enhanced 
by introducing metal atoms such as Ag, Fe, Au, Pb, and C 
[27]. The best results for metal doping can be obtained when 
the radius of doping metal is close to that of other metal, to 
enable its incorporation into lattice sites [28]. A few studies 
have been reported related to the doping of Bi2O3 semicon-
ductor with ZnO. Chen et al. [29] have examined the pho-
tocatalytic activity of ZnO doped Bi2O3 prepared by spray 
pyrolysis method for the treatment of methyl orange. Hou 
et al. [30] investigated the photocatalytic decomposition of 
methylene blue using Bi38ZnO58 synthesized by a solid-state 
reaction method.

Besides doping, more attention has been given to the 
design and synthesis of heterostructured catalysts. To 
date, large numbers of efficient heterostructures have been 
developed and used for photocatalytic degradation of vari-
ous organic pollutants because of the advantage over their 
corresponding single components. For example, AgI/WO3/
ZnO [31], g-C3N4@Fe3O4 [32], and rGO/TiO2 [33] photocat-
alysts have been prepared for the degradation of different 
organic pollutants. MoSe2/Ag3PO4 heterojunction exhibits 
enhanced photocatalytic activity because of high oxygen 
evolution [34]. So far, a variety of Z-scheme photocatalysts 
have been constructed and explored for energy and envi-
ronmental applications. For example, Bi2S3/BiVO4/MgIn2S4 
[35], Ag/g-C3N4(CN)/Bi3TaO7(BTO) [36], and MoS2QD/g-
C3N4 [37] showed excellent photocatalytic activity for the 
degradation of carbamazepine, sulfamethoxazole, and 
rhodamine B, respectively. g-C3N4/Ag2MoO4/Ag3PO4 com-
posite photocatalyst exhibits superior solar-driven oxygen 
evolution [38].

To the best of our knowledge, the synthesis, characteri-
zation and application of heterostructure α- and β-form of 
Bi2O3 doped with ZnO photocatalyst has not been reported. 
In the present work, heterostructured α-Bi2O3/ZnO doped 
β-Bi2O3 has been prepared and characterized. Its photocat-
alytic activity has been evaluated using ARS as a model 
pollutant.

2. Experimental

2.1. Catalyst preparation

The photocatalyst was prepared by modified sol–gel 
method with a molar ratio of Bi:Zn fixed at 1:0.25, using 
bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), zinc nitrate 
hexahydrate (Zn(NO3)3·6H2O), dextrose (C6H12O6), ammo-
nia solution (25% with specific gravity 0.91), and nitric acid 
(98 wt.%) (AR grade, Loba Chemie Pvt., Ltd.). Bismuth 
nitrate pentahydrate was dissolved in 100 mL of HNO3 
solution (60% v/v, HNO3) to avoid hydroxylation of Bi+3 
ions. Further 80 mL of ammonia solution was added under 

constant stirring, the white precipitate formed was washed 
with double distilled water several times and was refluxed at 
80°C for 4 h in 200 mL solution prepared by adding 100 mL 
of 0.25 M dextrose solution and 100 mL of 0.25 M zinc nitrate 
solution. After refluxing, the solution was evaporated on a 
water bath until the formation of shiny chocolate colored 
gel. The resulting gel was calcined at different temperatures 
(400°C, 500°C, and 600°C) for 1 h to obtain a yellow colored 
powder.

2.2. Characterization

X-ray diffraction (XRD) pattern of the prepared photo-
catalyst was recorded in the 2θ scan range of 20°–80° using 
APEX-II CCD diffractometer, Bruker, United States (Cu Kα 
radiations) operated at 40 kV and 30 mA. The morphology 
of the samples was examined with field emission scanning 
electron microscopy (FE-SEM, Carl Zeiss SMARTSEM® 
V05.06, Carl Zeiss, Germany) with energy dispersive spec-
tra (EDS, XFlash® 6|100, Bruker, United States). The chemi-
cal structure and composition of the prepared samples were 
analyzed by Fourier transform infrared (FTIR) spectroscopy 
using Spectrum 2, Perkin-Elmer, United States spectrom-
eter. The UV-vis absorbance spectra were obtained using 
UV-1650PC spectrophotometer, Shimadzu, Japan in the range 
of 200–800 nm.

2.3. Photocatalytic studies

Photochemical degradation experiments were carried 
in 500 mL vessel equipped with water circulation system 
placed in a specially designed four-chambered photoreac-
tor, each chamber equipped with 23 W LED bulbs (2,300 lm) 
with emission in the wavelength range between 480 and 
600 nm. During the irradiation, magnetic stirrers and 
aquarium aerators were used for homogeneous mixing and 
aeration of the reaction mixture, respectively. The irradi-
ance remains constant throughout the experiment and was 
found to be 90 µmol/m2/s. The absorption spectra of the dye 
solution were recorded using a UV-vis spectrophotometer. 
For the photocatalytic activity measurements, 0.1 g of pho-
tocatalyst (ZB4, ZB5, and ZB6) was added into 100 mL of 
ARS dye solution (20 mg/L at pH = neutral (6.7)). Before 
the illumination under visible light, the solution was stirred 
in dark for 20 min to obtain good dispersion and establish 
adsorption/desorption equilibrium between the photocata-
lyst and ARS dye. The solution under constant stirring and 
aeration was illuminated for 13 h under visible light irra-
diation. During the experiment, at certain time intervals, 
samples were withdrawn with the help of a syringe and 
filtered through a 0.45 μm Whatman syringe filter to record 
absorption spectra of degraded dye solution using UV-vis 
spectrophotometer. The degradation efficiency (%) was cal-
culated by using the following equation:

Degradation efficiency   %( ) 







= − ×1 100

0

A
A

 (1)

where A0 is the initial absorbance of ARS dye and A is the 
variable absorbance of ARS dye after different intervals of 
photo-irradiation [39,40].
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3. Results and discussion

3.1. XRD analysis

The crystallinity, crystal phases of synthesized nano 
photocatalyst, and the effect of calcination were examined 
by XRD as shown in Fig. 1. From XRD pattern and corre-
sponding 2θ values of diffraction peaks, it can be confirmed 
that heterojunction of α-Bi2O3 (JCPDS card number 71-2274) 
and ZnO doped β-Bi2O3 (JCPDS card number 43-0449) is 
formed at temperature 400°C. Zn+2 (0.74 Å) can substitute 
Bi+3 ionic sites (1.17 Å) because of its smaller ionic radius 
[29]. However, with an increase in calcination temperature 
the metastable β-Bi2O3 changes slowly to α-Bi2O3 which is 
confirmed as the intensity of peak at 27.4 increases in ZB6 
sample in comparison to ZB4 and ZB5. Moreover, peak at 
37.6° (1 1 2) appears in ZB5 corresponding to α-Bi2O3 and 
its intensity increases in ZB6. Two more peaks at 35° (2 1 0) 
and 62.9° (0 5 2) corresponding to α-Bi2O3 appear in ZB6. 
The crystallite size was estimated by applying the Scherrer 
equation (D = Kλ/β cos θ) to the full width at half-maximum 
(FWHM) of the (2 0 1) peak, where β is the half-height width 
of the diffraction peak, K = 0.89 is a coefficient, θ is the dif-
fraction angle (27.96°), and λ is the X-ray wavelength corre-
sponding to the Cu Kα radiations (λ = 1.5406 Å) [40,41]. The 
mean size of nanoparticles calculated by the Debye–Scherrer 
formula was found to be ~ 40–50 nm.

3.2. FESEM and EDX analysis

The surface morphology of prepared photocatalyst was 
analyzed by FESEM (Fig. 2). The FESEM images of prepared 
photocatalyst show the formation of irregularly shaped 
clusters of nanoparticles. With the increase in temperature, 
agglomeration increases. At 600°C, there is the appearance of 
a flowery arrangement constituted with a bean-shaped clus-
ter decorated densely by nano-grain sized particles. The EDS 
spectrum of prepared photocatalyst showed Bi, Zn, O peaks 
indicating that the prepared sample was composed of Bi, Zn, 
and O elements (Fig. 2). Furthermore, no peak related to any 
impurity was detected in the EDS spectrum which confirms 
that the synthesized photocatalyst is pure.

3.3. FTIR analysis

The chemical composition of the prepared photocatalyst 
was examined by Fourier transform infrared (FTIR) spectros-
copy (Fig. 3). The peak around 685 cm−1 is assigned to the 
Bi–O stretching vibration of the non-bridging oxygen of the Fig. 1. XRD patterns of ZB4, ZB5, and ZB6 photocatalyst.

 

 

 
Fig. 2. FESEM images and EDS spectra of (a) ZB4, (b) ZB5, and 
(c) ZB6 photocatalyst.
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distorted Bi–O polyhedra. The peak at 845 cm−1 is due to the 
stretching vibration of Bi–O bonds in BiO6 octahedra. The 
intense band at 1,389 cm−1 possibly arises due to the stretch-
ing vibration of the NO3

− ion [4,22,42,43].

3.4. UV-visible analysis

The optical properties of the synthesized photocatalyst 
were examined by UV-vis spectrum (Fig. 4) which depicts 
a strong absorption peak at 417, 409, and 403 nm (defined 
by the edge at the intersection of wavelength through 
extrapolation of the horizontal and sharply rising portions 
of the curves) for ZB4, ZB5, and ZB6, respectively [30]. The 
bandgap energy of the photocatalyst was calculated using 
the following equation:

Bandgap (eV) = 1,240/Wavelength (nm) [4,44] (2)

The bandgap of ZB4, ZB5, and ZB6 sample is found to 
be 2.97, 3.03, and 3.07 eV from the absorption edge. The 
decrease in absorbance with an increase in calcination tem-
perature is due to the change of β-form (bandgap 2.5 eV) to 
α-form (bandgap 2.9 eV) of Bi2O3. Moreover, the bandgap 
of the prepared photocatalyst is more than the pure form of 
Bi2O3 which confirms its doping with ZnO having bandgap 
3.37 eV.

3.5. Photocatalytic activity of the prepared photocatalyst

The photocatalytic activity of prepared photocatalyst 
was evaluated by photo-degradation of widely used textile 
dye, Alizarin Red S (sodium alizarin sulfonate, C14H6Na2O7S) 
under visible light irradiation. It is a water-soluble anthra-
quinone dye and its release in the environment poses a 
threat to human beings and animal life [45–48]. The activi-
ties of the different (ZB4, ZB5, and ZB6) photocatalysts were 
evaluated by monitoring the UV-vis spectrum of irradiated 
ARS dye solution. Fig. 5 shows a time-dependent UV-vis 
spectrum of ARS dye during visible light photoirradiation 
with a significant decrease in absorption intensity with an 

increase in irradiation time. The spectra of ARS dye shows a 
peak at 516 nm in the visible region and two narrow peaks 
at 334 and 261 nm in the UV region. The rate of ARS decol-
orization was monitored for a decrease in the intensity of 

Fig. 3. FT-IR spectra of ZB4, ZB5, and ZB6 photocatalyst.

 

 

Fig. 4. UV-vis spectra of (a) ZB4, (b) ZB5, and (c) ZB6 photocatalyst.
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prominent peak at λmax = 516 nm indicating the degradation 
of chromatophoric groups of ARS dye [49,50]. The decolor-
ization efficiency was maximum with ZB4 (88%) and only 
59% and 51% decolorization was observed with ZB5 and 
ZB6 within 13 h, respectively. The degradation efficiency of 
the ARS dye was observed for the decrease in intensity of 
two narrow peaks at 334 and 261 nm (related to unsaturated 
bonds). It can also be seen that maximum degradation effi-
ciency was found with ZB4 as compared to ZB5 and ZB6 as 
shown in Fig. 6.

3.6. Photocatalytic degradation mechanism

Fig. 7 shows the schematic illustration of the photo-
catalytic mechanism of ZB4 photocatalyst. The feasibility 
of a photocatalytic activity depends mainly on positions 
of the valence band maximum and conduction band mini-
mum. The valence band (VB) and conduction band (CB) 
potentials can be calculated by using the following equation:

E X E Ee
gCB  = − − 0 5.  (3)

where X is the absolute electronegativity of the semi-
conductor, (X value for Bi2O3 is 5.986 eV and for ZnO is 
5.79 eV), Ee is the energy of free electrons on the hydrogen 
scale (~4.5 eV), Eg is the bandgap energy of semiconduc-
tor and ECB can be determined by ECB = EVB – Eg [26,51–53]. 
The conduction band (CB) and valence band (VB) poten-
tials of ZnO, ZB4, ZB5, and ZB6 are given in Table 1.

On irradiation with light conduction band electrons (e–) 
and valence band holes (h+) are generated in the photocata-
lyst. The conduction band (CB) of doped material is higher 
in position than ZB4 which can trap electrons (e–) from 
conduction band (CB) of semiconductor for the photoreduc-
tion of O2 to produce superoxide radical anion (O2

•−) and on 
protonation further yields HOO•. However, the formed pho-
togenerated holes (h+) reacts with OH− or H2O and oxidize 
them into OH• radicals. The resulting OH• radicals, being 

highly active and strongly oxidizing species are responsible 
for the oxidation of ARS dye into simple end-products (such 
as CO2, O2, etc.). These reactions can be summarized in the 
following steps [27,46,54,55]:

ZnO/Bi O hv e CB h VB2 3 + → +( ) ( )− +  (4)

OH h OH− + •+ ( ) →VB  (5)

H O h VB OH H2 + +( ) →+ • +  (6)

O e CB O2 2+ →( )− •−  (7)

O H HO2 2
•− + •+ →  (8)

HO HO H O O2 2 2 2
• •+ → +  (9)

H O O OH OH O2 2 2 2+ → + +•− • −  (10)

Fig. 5. UV-vis absorption spectral changes of ARS dye solution in 
the presence of ZB4, ZB5, and ZB6 photocatalyst at neutral pH 
(6.7) (dye concentration – 20 mg/L, catalyst dose – 0.1 g/100 mL, 
time – 13 h).

Fig. 6. Comparison of percentage degradation of ARS dye 
solution (dye concentration – 20 mg/L, pH – 6.7 (neutral), time 
– 13 h) using ZB4, ZB5, and ZB6 photocatalyst (0.1 g/100 mL) at 
different peaks 516, 334, and 261 nm.

Fig. 7. Schematic diagram of the photocatalytic degradation 
mechanism of ZB4 photocatalyst.
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ARS dye OH Degradation products+ →•  (11)

ARS dye h VB Oxidation products+ ( ) →+  (12)

ARS dye e CB Reduction products+ →( )−  (13)

The difference in the photocatalytic efficiency of pre-
pared catalysts at different calcination temperatures can be 
explained based on the position of the conduction band (CB) 
and valence band (VB) calculated as in Table 1. It is seen that 
the maximum difference in CB potential of ZnO and ZB4, 
that is, the trapped electrons (e–) remain for a longer time in 
CB or other words maximum charge separation takes place 
in ZB4 which prevents electrons-holes recombination, hence 
maximum photodegradation was found to be with ZB4.

4. Conclusions

α-Bi2O3/ZnO doped β-Bi2O3 photocatalyst at different 
calcination temperatures was synthesized by a modified 
sol–gel method. The results revealed that an increase in 
calcination temperature affects the phase and morphol-
ogy of the prepared photocatalyst. The photodegradation 
efficiency of ZB4, ZB5, and ZB6 was evaluated using ARS 
dye as an organic pollutant under visible light irradiation. 
The maximum photocatalytic activity of ZB4 (88%) was 
observed as compared to ZB5 (59%) and ZB6 (51%) due 
to less bandgap (2.97 eV) and less phase transformation 
(β-Bi2O3 to α-Bi2O3) at lower temperature, that is, 400°C. 
Therefore, ZB4 powder calcined at lower temperature, that 
is, 400°C acts as an efficient photocatalyst for the degrada-
tion of organic compounds in a neutral medium under visi-
ble light illumination.
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