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a b s t r a c t
Traditional remote sensing methods have short revisiting cycles and poor timeliness, it is difficult 
to apply in agriculture because of its high cost. In order to solve the above problems and meet 
the requirements of digital agricultural development. This paper focuses on the optimization of 
integrated navigation algorithms and the establishment of a three-dimensional digital model of 
a ground specific target for multi-rotor unmanned aerial vehicle remote sensing at low altitude. 
Firstly, aiming at the poor positioning accuracy of the traditional small airborne integrated navi-
gation systems, a linear decreasing particle swarm optimization (PSO) algorithm is used to set the 
optimal noise covariance matrix Q and R. The global optimization characteristics of PSO algorithm 
is used to optimize Q and R jointly. Secondly, a set of filtering and interpolation algorithms for 
processing point cloud data of airborne LiDAR remote sensing systems are integrated. The method 
of extracting irrigation canal characteristic lines is proposed; a new threshold selection method is 
used to improve the accuracy of irrigation canal characteristic line extraction. Finally, the experiment 
shows that the convergence curve of the iteration reaches the global optimum after 100 iterations, 
the integrated navigation algorithm optimized by linear decreasing PSO has a strong robust ability. 
The variance of longitude error and latitude error is 0.00076 and 0.00041. The three-dimensional 
digital model of wheat in two different periods, Euonymus japonicus and Anemone was established 
in MATLAB. The height error of the three-dimensional digital model of the above crops is 4.78%, 
4.46%, 5.72%, and 7.31%. An irrigation canal was successfully extracted and its three-dimensional 
digital model was established. The errors of average depth and width between the three-dimensional 
model and the true value are 4.42% and 4.56%.

Keywords: �LiDAR remote sensing; Multi-rotor unmanned aerial vehicle; Particle swarm optimization; 
Ecological irrigation canal; Ground crop; Point cloud data

1. Introduction

LiDAR is a promising active remote sensing technology 
that has been applied in many scientific fields to extract 
key parameters of biophysics [1–3]. As one of the most 
effective active remote sensing technologies, LiDAR has 
great advantages in obtaining the target physical param-
eters [4]. Airborne laser scanner (ALS) and terrestrial laser 
scanner are the two most common platforms of LiDAR [5]. 

The data obtained by LiDAR remote sensing can achieve 
better observation of individual plants, which is unmatched 
by the traditional two-dimensional data obtained by images 
[6–9]. LiDAR has been widely used in many fields. LiDAR 
can provide information about the horizontal and vertical 
structure of the forest and has been successfully used to 
estimate the height of the canopy [10–12]. There are also 
many research results for the establishment of laser radar 
three-dimensional digital model and target extraction. 
Alexander et al. [13] studied the effect of slope and canopy 
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characteristics on treetop and tree height estimation of ALS 
data for complex terrain and complex canopy characteris-
tics in forests. The same method using the digital surface 
model minus the digital terrain model to derive the can-
opy height model can be used as a reference for estimat-
ing the plant height on the canal slope. He et al. [14] used 
multiple 2D laser radars to establish a 3D environment, so 
calibrating the geometric transformation between multiple 
sensors and carrier frames is a research focus. This study 
proposes a method that can calibrate multiple 2D laser 
radars, a calibration algorithm based on multi-type geo-
metric features is proposed, which is to extract features 
such as points, lines, surfaces and quadrics from the point 
cloud data of each LiDAR sensor to achieve matching of 
multiple radar data. The segmentation method of build-
ing top surface area growth of the building with the laser 
radar point cloud data is constructed. The segmentation 
of the top surface of the building can be accurately real-
ized. Because the intensity information of point cloud has 
certain separability, the classification of ground materials 
can be realized [15]. Cao et al. [16] aimed to associate the 
active remote sensing with the passive remote sensing to 
retrieve the forest canopy cover using the linear spectrum 
decomposition model and geo-optical model, which makes 
forest canopy coverage easier to retrieve. Fayad et al. [17], 
Wang et al. [18], Xiang et al. [19], Paris and Bruzzone [20] 
studied the application of LiDAR remote sensing data in 
forest canopy detection and single-wood detection, includ-
ing point cloud difference and filtering. However, current 
airborne and satellite LiDAR systems are unable to provide 
data on a regional and global scale. The unmanned aerial 
vehicle (UAV) is highly flexible and the UAV-equipped 
LiDAR remote sensing system can quickly and simultane-
ously collect data from the same area. The airborne LiDAR 
system consists of two parts: LiDAR and integrated navi-
gation system. In order to improve the accuracy of remote 
sensing operations, the optimization of the algorithm can 
further improve the accuracy when the hardware cannot 
be improved. For the past several decades, there has been a 
great change in integrated navigation systems. In order to 
exploit the complementary characteristics of different sen-
sors, different navigation sensors were combined [21,22]. 
However, the global position system/inertial navigation 
system (GPS/INS) integrated navigation system is still 
the most sophisticated navigation system, which has been 
widely used to provide the geographical position, velocity, 
and attitude of a vehicle. Traditional GPS/INS integrated 
systems can bridge the GPS gaps and the navigation capa-
bility is strongly dependent on the performances of stand-
alone INS [23]. The GPS/INS integration system is designed 
by employing an adaptive filter that can estimate measure-
ment noise variance using the residual of the measurement 
[24]. Ultra-tightly coupled method is the best but it is too 
complicated [25–27]. In Wang et al. [28], a combined nav-
igation method for small agricultural drones is proposed. 
The feedback correction method is used in the paper. 
Finally, the experimental results show that the filtered nav-
igation parameter error is reduced before filtering. Yadav 
et al. [29] clarifies about the advancement of GPS and INS 
models and demonstrate in getting the exact values in all 
aspects. Zhou et al. [30], Derbel et al. [31], Oh and Hwang 

[32], Chen [33], Choi et al. [34], Liu et al. [35] has improved 
the integrated navigation method to varying degrees. The 
particle swarm optimization (PSO) has received increased 
attention in many research fields in recent years [36]. PSO 
was first proposed by Eberhart and Kennedy [37]. PSO 
is a simple and effective optimization algorithm that can 
achieve fast convergence by adjusting parameters [38–40]. 
Cai et al. [41], Li et al. [42], Liu [43], Qu et al. [44] have 
developed a variety of applications and developments in 
PSO. This paper is dedicated to promoting the applica-
tion of LiDAR remote sensing methods in agriculture and 
canal irrigation is the top priority of agricultural produc-
tion. The ecological irrigation canal is the main content of 
the construction of water-saving and ecological irrigation 
areas, which is an important link in the process of build-
ing modern agriculture. The water canal was built in the 
1950s for irrigation to maintain local agriculture during the 
dry season [45]. The construction of ecological irrigation 
canals plays an important role in improving the water envi-
ronment and alleviating the shortage of water resources. 
Therefore, the construction of ecological irrigation canals 
is the only way for the development of China’s agricultural 
modernization. Agricultural water use efficiency has been 
affected by farming methods, fertilization methods, and 
irrigation schedules, which is also affected by the construc-
tion of farmland water conservancy infrastructure [46–48]. 
Because of the unstable precipitation in arid and semi-
arid regions, irrigation channels are important for food 
and food supplies in these areas [49,50]. From the aspect 
of technical efficiency, the efficiency of water allocation 
can be improved through water circulation and irrigation 
[51,52]. Therefore, the construction of ecological irrigation 
canals is the only way for the development of China’s agri-
cultural modernization. At the same time, the efficiency of 
agricultural water can be increased.

The aim of this paper is to develop and apply an 
approach that realizes the extraction of ecological irrigation 
areas and the establishment of a three-digit model of ground 
crops. Through these efforts, we will lay the foundation for 
the establishment of a three-dimensional digital model of 
ecological irrigation channels and crops in the future and 
thereby promote the digitization of agricultural produc-
tion. The other sections are arranged as follows: section 2 
– Global Navigation Satellite System/Inertial Navigation 
System (GNSS/INS) integrated navigation system model 
is built, the PSO algorithm was introduced; In section 3, 
Point cloud data acquisition was introduced; section 4, the 
feature extraction algorithm was introduced; section 5 is 
experiment and verification, the validity of the PSO algo-
rithm is verified and the model of ecological irrigation 
canal and three ground groups were established, the rea-
sons for the test error are also discussed in detail.

2. GNSS/INS integrated navigation system

2.1. GNSS and INS error model

The coordinate system of INS adopts the “geographical 
coordinates of East-North-Up (ENU)”. The navigation infor-
mation error is nine-dimensional, including the three-dimen-
sional platform error angle ϕE, ϕN, ϕU, the three-dimensional 
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speed error δν δν δν  E N U, ,  and the three-dimensional position 
error δλ, δL, δh. The earth’s rotation angular velocity is wie, 
The ellipsoidal equatorial plane radius Re  =  6,370,000  m, 
radius of curvature in prime vertical RN  =  Re(1  +  fsin2L), 
radius of meridional section RM = Re(1 – 2f + 3fsin2L). Ovality 
is f  = 1/298.257, the velocities along the ENU direction are 
νE, νN, νU, the longitude, latitude, and altitude are λ, L, h; 
equivalent gyro drifts in ENU directions are εE, εN, εU, the 
equivalent accelerometer error is ∇ ∇ ∇E N U, , .

•	 Speed error equation:

δ δω ν ω ω νν ϕ δω δ = − +( ) − +( ) + ∇× × ×f n n n n n n n nn2 2ie en ie en 	 (1)

•	 Platform error angle equation:

ϕ δ δω ω ω ω ϕ εn n n n n n n= + − +( )× +ie en ie en 	 (2)

•	 Position error equation:
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With GPS as the representative, the GNSS error model 
is deduced as follow:

X A X DG G G G G= + ξ 	 (5)

Because the carrier is stationary, in the GPS receiver data 
acquisition interval, the speed as a constant value, so only 
consider the horizontal direction. The error model of GPS 
selects four-dimensional state model:

X LG G G

T
=  σν σν σ σλGn Ge, , , 	 (6)
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where the earth radius is RM  =  Re(1  –  2f  +  3fsin2L), 
RN = Re(1 + fsin2L), f = 1/298.257.

2.2. GNSS/INS integrated navigation system model

The corresponding equation of state is given by

X FX Gw= +� 	 (8)

where X  =  [XI, XG]T is state variable, F
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w = [wI, wG]T is the process white noise matrix of the system, 
the subscript “I” and “G” represent INS and GNSS.

In this paper, the speed difference and the position dif-
ference are chosen as the external observations to establish 
the combined measuring equations of position and velocity.
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where LINS, λINS and hINS represent the longitude, latitude and 
altitude calculated by the INS Lt, λt, ht, represent the carri-
er’s true longitude, latitude and altitude information, δL, δλ, 
δh represent the longitude error, latitude error and height 
error solved by INS.
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where Nn, Nε, Nu represent position error of GNSS receiver 
along the direction of ENU. Then the external measurement 
position error can be defined as Z L Lpos INS GPS= − . The location 
measurement equation is given by:

Z H t X t V tPOS POS POS= ( ) ( ) + ( ) 	 (11)

GPS and INS speed measurement information are shown 
as follows:
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where νe, νn, νu represent the speed along with the direction of 
ENU solved by INS; νe, νn, νu are the true speed along with the 
direction of ENU under the geographic coordinate system, 
δνe, δνn, δνu represent the speed error along with the direction 
of ENU solved by INS.
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where Me, Mn, Mu are the components of the velocity mea-
surement errors on the three axes of East-North-Up. The 
velocity error of the external measurement can be defined 

as Z
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is given by:

Z H t X t V tvel vel vel= +( ) ( ) ( ) 	 (14)

According to Eqs. (9)–(14), we can get a GNSS/INS 
integrated navigation system’s position and velocity com
bination measurement equation:
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2.3. GNSS/INS integrated navigation information fusion 
framework

In this paper, centralized Kalman filtering is used to 
process INS and GNSS data. INS and GNSS data are sent 
to the same Kalman filter. When the state vector in the 
filtering equation is a combination of the error state of the 
INS navigation parameter and the error state of the GPS 
navigation parameter as follow:

∆ ∆ ∆X X XI G= + 	 (16)

Then the Kalman filter’s optimal error estimation 
∆ ∆,X XI G( )� �  can correct the original system to obtain accurate 

navigation parameters. In this paper, the discrete Kalman 
filter algorithm is introduced to estimate the state esti-
mation of the next moment according to the system state 
estimation of the previous moment through the recursive 
algorithm. The system does not need to store a large amount 
of measured data. The estimation process is shown by the 
following five equations:

•	 State one-step prediction:

/ ,X Xk k k k k−( ) − −=1 1 1Φ� � 	 (17)

•	 Predict the mean square error:

P P Qk k k k k k k k k k
T

( / ) , ,− − − − − − −= +1 1 1 1 1 1 1Φ ΓΦ Γ 	 (18)

•	 Filter gain:

K H P RP H Hk k k k
T

k
T

k k k k= +( )− −

−

( / ) ( / )1 1

1
	 (19)

•	 Optimal state estimation:

( / ) ( / )X X XK Z Hk k k k kK K K= + −( )− −1 1� � � 	 (20)

•	 Estimate the mean square error:

P I K H Pk k k k k= −( ) −( / )1 	 (21)

where Q is system noise covariance matrix, R is measure-
ment noise covariance matrix, Φk,k–1 is the one-step trans-
fer matrix from the time instant tk–1 to time instant tk, Γk–1 is 
system noise driver array; Hk is measurement array, Vk is 
measurement noise sequence. Given the initial value 0X�  and 
P0, according to the k moment of measurement Zk, the state 
estimations Xk (k = 1, 2, 3…) can be recursive calculated by the 
measurement Zk of the kth moment.

2.4. PSO algorithm

Assume that in the D-dimensional search space, a pop-
ulation of n particles X  =  (X1, X2, …, Xn), where the i-th 
particle is represented as a D-dimensional vector Xi = (Xi1, 
Xi2, …, XiD)T, representing the position of the i-th particle 
in the D-dimensional search space and a potential solution 
to the problem. According to the objective function, the fit-
ness value corresponding to each particle position Xi can 
be calculated. The velocity of the i-th particle is Vi  =  (Vi1, 
Vi2, … ViD), the individual extremum is Pi  =  (Pi1, Pi2, …, PiD)T 
and the population extremum of the population is Pg = (Pg1, 
Pg2, …, PgD)T. During each iteration, the particles update 
their speed and position through individual extremum 
and population extremum. The formula is as follows:

V t V tw c r P x t c r G x tij ij ij ij( + ( ) best best1) += −  + − 1 1 2 2( ) ( ) 	(22)

x t x t V tij ij ij( ( )+ = +1 1) + ( ) 	 (23)

where Vij and xij are the velocity and position of parti-
cle i in the j-th dimension respectively; P best is the indi-
vidual optimal position of the space search after particle i 
traversal; Gbest is the global optimal position of all particles 
searched so far; t represents the current time; c1 and c2 are 
non-negative constants called acceleration factors; r1 and r2 
are random numbers distributed in the interval (0,1).

In this paper, the fitness function is as follow:

S V X V X V X V X= ar( ) ar( ) + ar( ) + ar( )Lo La Ev Nv+ 	 (24)

where XLo is the longitude error, XLa is the latitude error, XEv 
is the eastward velocity error, XNv is the northward velocity 
error.

3. Point cloud data obtain and processing

Establishing accurate models of ground objects can play 
an important role in urban design planning, agricultural 
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production, and water conservancy construction. The mod-
eling process of low-altitude remote sensing, oblique photo-
grammetry, and LiDAR-based 3D modeling is given in Fig. 1.

All three methods can generate three-dimensional 
models of targets, but methods (a) and (b) use passive 
sensing devices to obtain image data, which is greatly 
affected by the intensity of light. The LiDAR used in the 
method (c) belongs to the active remote sensing device, 
which can still work normally under the meteorological 
conditions and nighttime when the light is weak. In addi-
tion, multi-image matching is a key step in the method (a) 
and (b) operation. The goal of establishing a three-dimen-
sional model in this paper is mainly for crops and irriga-
tion canals in ecological irrigation districts. The modeling 
results of methods (a) and (b) are severely affected when 
the model object is a large area of wheat. Because the back-
ground color is all green, the matching of the correspon-
dence points will cause a large error due to the inability 
to find an obvious reference. In addition, the problem 
of precision control needs to be considered, and meth-
ods (a) and (b) do not perform well in the measurement 
of elevation accuracy, so more production time and cost 
are required in order to improve the elevation precision. 
Method (c) can directly generate a target point cloud with 
no requirements for the color and background of the target. 
It reduces the requirements of the operating environment 
and saves a lot of production time.

3.1. Coordinate transformation

After obtain calculating the distance R between the 
laser transmitting point and the target point, it is necessary 
to obtain the three-dimensional space coordinates in the 
World Geodetic System-1984 Coordinate System (WGS-84) 
through the transformation of multiple coordinate systems. 
Therefore, in the laser beam coordinate system, the laser foot 
point can be expressed as:
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In the laser scanning coordinate system, the laser foot 
point can be expressed as:
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where θi is the instantaneous scanning angle of the laser 
beam, which is mainly calculated by the number of system 
scanning angle θ and system scanning angle N, then the cal-
culation formula of the number of i instantaneous scanning 
angle is:

θ
θ θ

i i
N

= − ×
−2 1

	 (27)

In the airborne LiDAR system, the scanning device and 
INS of LiDAR must have certain angle errors in installa-
tion, so their coordinate systems can’t be guaranteed to be 
parallel. We suppose that the angle between the two coor-
dinate systems and the three coordinate axes is α, β, γ and 
the offset between the origin of the two coordinates is (ΔxL, 
ΔyL, ΔzL)T. Therefore, the laser foot point is expressed in the 
inertial navigation platform coordinate system as follows:
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Fig. 1. (a) Low-altitude remote sensing, (b) oblique photogrammetry, and (c) LiDAR-based 3D modelling.
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where RI is the transformation matrix, among them:
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There is an eccentricity (ΔxI, ΔyI, ΔzI)T between the phase 
center of GPS and the reference center of the inertial navi-
gation platform. The Inertial Measurement Unit (IMU) can 
measure the roll angle, pitch angle and yaw angle, respec-
tively as φ, ϕ, ψ, according to these three Rotating Euler 
angles, the conversion from the inertial platform to the local 
coordinate system can be realized. The laser foot point is 
expressed in the local coordinate system (xLH, yLH, zLH)T as:
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where RB  =  R(φ)R(ϕ)R(ψ) is the transformation matrix, 
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After obtaining the coordinates of the laser foot point in 
the local horizontal coordinate system, the coordinates in the 
WGS-84 coordinate system (xw84, xw84, xw84)T can be obtained 
through the coordinate transformation again:
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where RW is the rotation function associated with latitude 
and longitude, RG is the coordinate rotation matrix due to 
vertical misalignment and the coordinate of the antenna 
phase center of GPS system in the WGS-84 coordinate 
system is (x84, y84, z84)T. According to Eqs. (25)–(30), the 3D 
spatial coordinate of the target point is:
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3.2. Point cloud data processing

After obtaining the three-dimensional point cloud data 
of the ecological irrigation canal and surrounding areas with 
UAV, the point cloud data of other objects unrelated to the 
ecological irrigation canal, such as buildings and cars, must 
be removed.

In order to simplify the data structure and improve com-
putational efficiency, we adopt the method of virtual grid 
handling processing first point cloud data. To a certain extent, 
the error caused by the interpolation of a regular lattice net 
is reduced. It’s also structurally quite simple. The position of 
each point can be calculated by the following formula:
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where Xk, Yk are the coordinates of a point, Xmin, Ymin is the 
minimum in the X, Y direction, cell size is the edge length 
of the partition grid.

Mathematical morphological filtering methods include 
open and close operations, the two algorithms are composed 
of basic operations of expansion and corrosion. When pro-
cessing point cloud data, the maximum elevation value of 
point cloud in the filtering window will be selected as the 
new elevation value of the point. The formula is as follows:
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The corrosion operation is to select the minimum eleva-
tion value of the point cloud in the filtering window as the 
new elevation value of the point. The formula is as follows:
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The first operation is corrosion and then expansion. 
The closed operation is opposite, the formula is as follows:
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The method of opening operation is generally used 
to acquire 3D point cloud data on the ground, that is, to 
remove the non-ground 3D point cloud data. Using Eq. (36) 
to calculate the difference between the elevation value of 
the original point cloud data and the elevation value after 
opening operation and then compare the difference with the 
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filtering threshold T. If it is greater than T, remove the point, 
otherwise remain.

dH f fB B= −  δ ε ( ) 	 (36)

The flow chart of point cloud data processing in the 
target area is shown in Fig. 2.

4. Feature extraction

After obtaining the point cloud data of the ecological irri-
gation canal area, it is necessary to extract its characteristic 
lines. The method of extracting the characteristic line of the 
point cloud of the building is suitable for the extraction of 
the intersection line of the surface and the surface. The same 
characteristic line exists in the ecological irrigation canal. 
Therefore, the point cloud data of the ecological irrigation 
canal area are processed in section 3. The k-dimensional (K-D) 
tree [53] is used to search the local K-neighborhood of point 
Np x y z R j ki j j j= ∈ ={ }( , , ) | , ,3 1 2 3  and find out the Euclidean 
distance of current point Pi, and it can be shown as follow:

dist = + + ∈( - ) ( - ) ( - ) |( , , )x x y y z z x y z Npi j i j i j j j j i
2 2 2 	 (37)

Sort the selected k points by distance from large to small 
and take the current point as a vertex. As shown in Fig. 3, 
the three-neighborhood points A, B, C constitute a plane 
triangle. Calculate the distance from pi to triangle ABC. 
The point dj on the characteristic line is larger, the point dj 
on the ground and slope is smaller. In order to reduce the 
noise influence on the extraction of characteristic line, the 
average value of dj is compared to the set threshold dmin, if 
the average value d� is greater than the set threshold, then 
the point remains.

Most sections of ecological irrigation canals are inverted 
trapezoidal or rectangular. Taking the inverted trapezoidal 

section as an example, the characteristic line schematic dia-
gram is shown in Fig. 4.

However, unlike the extraction of the characteristic lines 
of a building, the ecological irrigation canal is rougher than 
the wall surface of the building and there is an influence of 
debris such as stones and weeds.

Therefore, the set threshold must be accurate, other-
wise, it will cause a greater error. In this paper, the first 
calculation of the ecological irrigation canal characteristics 
line is the ecological irrigation area slope dj, then take the 
average d�1 as the set threshold dmin and compare with d�. This 
way avoids deleting points on the true feature line because 
the selected dmin is small when the surface of the ecological 
irrigation canal slope is rough and there is a lot of debris.

5. Experiment and verification

5.1. PSO experiment

We use a joint optimization method for the system noise 
variance matrix Q and the measurement noise matrix R. 
When performing the PSO algorithm, we set the number of 
iterations to 30, 50, and 100 times. There are 12 parameters 
for optimizing Q and R, and the range of values we set in this 
paper is as follows: The upper limit of the values of and is 
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, and 
0.05. The lower limit of the values of and is 0.00001, 0.00001, 
0.00001, 0.0025, 0.0025, 0.002, 0.0001, 0.001, 0.0001, 0.2, 0.2, 
and 0.

Point cloud data input

Virtual grid processing

Corrosion operation

Expansion operation

Point cloud data output

Open operation

 
Fig. 2. Point cloud data processing.

C B

A

P i

 

Fig. 3. Feature point and plane triangle schematic.

 

Characteristic line

Fig. 4. Ecological irrigation canal section and characteristic line.
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When the number of iterations is 30, 50, and 100 times, 
the iteration convergence curve, longitude, and latitude 
error curve are shown in Fig. 5. Figs. 5a–c and Table 1 show 
that the error parameters of longitude and latitude are 
greatly reduced when the number of iterations is 30 times. 
The variance of PSO-filtered error of longitude error is 
0.00086, the variance of PSO-filtered error of latitude error 
is 0.00059, the optimal objective function value is 1.0614. But 
the iterative convergence curve shows that the number of 
iterations is 30 times, the curve does not completely con-
verge, so the number of iterations must be increased. When 
the number of iterations is 50 times, Figs. 5d–f and Table 
1 show that the error of the latitude and longitude error 
phase is further reduced. The variance of PSO-Filtered error 
of Longitude error is 0.00077, the variance of PSO-filtered 
error of latitude error is 0.0004, the optimal objective func-
tion value is 0.84712. The convergence characteristic curve 
has converged, but to prevent the optimization from falling 
into local optimum, the number of iterations is increased to 
100 times. Figs. 5g–i and Table 1 show that the number of 

iterations is 100 times, the variance of PSO-filtered error of 
longitude error is 0.00076, the variance of PSO-filtered error 
of latitude error is 0.00041, the optimal objective function 
value is: 0.84906. The above chart shows that after the opti-
mization curve enters the global optimum at the 38th itera-
tion, the iteration still converges at the same position when 
the number of iterations is 100, and the longitude error and 
the latitude error have no significant change compared with 
50 times, which indicates that the optimization result is the 
optimal state.

5.2. 3D model generation of ground crops

In order to verify the effectiveness of this algorithm, as 
shown in Fig. 6, we use RPLIDAR A2 and fix it on the UAV to 
collect data, the GPS module and the IMU are also installed. 
The parameters of the Lidar are shown in Table 2.

The data output from LiDAR system includes Chiptime, 
az(g), ay(g), az(g), wx(deg/S), wy(deg/S), wz(deg/S), anglex(deg), 
angley(deg), anglez(deg), Lon(deg), Lat(deg). Herein, 
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Fig. 5. Objective function value curve; latitude and longitude error curve.
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Chiptime is the timestamp corresponding to the collected 
data. ax(g), ay(g), az(g) is the acceleration of the current carrier 
along each of the three axes. wx(deg/S), wy(deg/S), wz(deg/S) 
is the angular velocity of the three axes of the current carrier. 
Anglex(deg), angley(deg), anglez(deg) is the roll, pitch and 
yaw attitude angle. Lon(deg), Lat(deg) is longitude and lat-
itude. Airborne LiDAR system can collect point cloud data 
and longitude and latitude information at the same time. We 
selected three representative ground crops in the agricul-
tural irrigation area as the target of this experiment.

Wheat represents the most widely grown food crop, and 
Euonymus japonicus and Anemone have both medicinal value 
and ornamental value. The three ground groups are shown 
in Figs. 7a, c, e and g. The three-dimensional digital model is 
shown in Figs. 6b, d, f and h.

The experiments are run on the MATLAB 2017 (a) plat-
form. As shown in Fig. 7, the direction of the red arrow is 
the direction of the UAV flight. The height of UAV from 
the ground target is set at 5  m. According to the point 
cloud data obtained in section 3, we obtained point cloud 
data for the target crop. MATLAB is used to build a three-
dimensional digital model of the target crop. As shown in 
Fig. 7, the 3D model of the wheat, Euonymus japonicus and 
Anemone were built. The error between the 3D model and 
the actual crop average height data is compared in Table 
3. In order to detect the accuracy of generating a three-di-
mensional model, the average height of each ground crop 
is calculated by taking a certain number of sampling points 
on the surface of the crop. As shown in Table 3, the aver-
age height of wheat is 712.63 and 526.306 mm, the 3D model 

average height of wheat is 678.58 and 502.832  mm, the 
average height of Euonymus japonicus is 920.33 mm, the 3D 
model average height of the sedum Euonymus japonicus is 
867.65 mm. The average height of the Anemone is 410 mm, 
the 3D model average height of the Anemone is 440 mm.

5.3. Ecological irrigation canal extraction

In order to verify the extraction method of the ecological 
irrigation canal characteristic line proposed in this paper, 
we also selected an ecological irrigation canal for data 
collection in the Hetao irrigation area of Inner Mongolia. 
The ecological irrigation canal and the three-dimensional 
digital model of the ecological irrigation canal are shown 
in Fig. 8 at different angles and the characteristic lines are 
obvious.

As shown in Table 4, the errors between the actual value 
and the 3D model in average depth and height are 4.42% and 

 

Tablet PC

GPS

RPLIDAR

3D Printing Bracket

Inertial Measurement Unit

3D Printing Bracket

Fig. 6. Airborne LiDAR remote sensing system.

Table 1
Navigation parameters variance

Navigation parameters

30 iterations 50 iterations 100 iterations

Longitude Latitude Longitude Latitude Longitude Latitude

Variance of original filtered error 0.0091 0.0047 0.0091 0.0047 0.0091 0.0047
Variance of PSO-filtered error 0.00086 0.00059 0.00077 0.0004 0.00076 0.00041

Table 2
LiDAR parameters

Name RPLIDAR A2

Line number Single
Weight 190 g
Effective distance 18 m
Precision +/–4 cm
Scanning frequency 5–15 HZ
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a   

b  

 
c   

d  

 
e  

f  

 
g  

 
h  

Fig. 7. The ground group (a) wheat in grouting period, (b) wheat in the jointing stage, (c) Euonymus japonicus, (g) Anemone, (b, d, f and 
h) are three-dimensional digital models corresponding to ground crops.
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4.56%. The 3D model can reflect the shape and size of real 
ecological irrigation canals. The experiment proves that the 
airborne LiDAR point cloud data acquisition system works 
well. The ecological irrigation canal extraction algorithm 
proposed in this article is effective.

5.4. Discussion

In this section, a LiDAR remote sensing data acquisi-
tion system based on light multi-rotor UAV is established 
to collect point cloud data of ground targets. The linear 
decreasing PSO experiments, three-dimensional digital 
model generation of ground crops and extraction of eco-
logical irrigation canals are carried out separately. The 
method of MATLAB simulation is used to verify that the 
Kalman filtering algorithm optimized by linear decreas-
ing PSO can reduce the positioning error of the integrated 
navigation system. The three-dimensional digital model 
of surface crops and ecological irrigation canals are estab-
lished. The error between the actual target and 3D model 
mainly comes from the following two aspects after analy-
sis: (1) LiDAR ranging error, the LiDAR used in this paper 
has an error is +/–4  cm at the distance of 10  meters. (2) 
The mounting position error between the LiDAR and the 
inertial navigation sensor is preserved with the matrix 
transformation of the point cloud data.

6. Conclusions

Further increasing the application of advanced sen-
sors such as LiDAR in agricultural production meets the 
requirements of current digital agricultural development. 
In traditional mapping operations, the camera is heavily 
influenced by weather and lighting factors, which greatly 
increases the difficulty of post-processing. The remote sens-
ing methods of fixed-wing aircraft and satellite-equipped 
LiDAR are costly and have low real-time performance. 
The linear descending PSO algorithm is used to improve the 
positioning accuracy of multi-rotor UAV remote sensing. 
Experiments show that the linear decreasing PSO algorithm 
can greatly improve the latitude and longitude output accu-
racy and help to improve the positioning accuracy of the air-
borne LiDAR remote sensing system. Through filtering and 

Table 3
3D model and actual crop average height data comparison

Crop Wheat(a) Wheat(c) Euonymus japonicus Anemone

Actual crop average height 712.63 526.306 920.33 410
3D model average height 678.58 502.832 867.65 440
Error 4.78% 4.46% 5.72% 7.31%

 
 

 

 
 

 8. Ecological irrigation canal. Fig. 8. Ecological irrigation canal.

Table 4
3D model and actual value data comparison of irrigation canal

Average depth Average width

Actual value 1,200 mm 900 mm
3D model value 1,253 mm 859 mm
Error 4.42% 4.56%
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interpolation of point clouds, three representative surface 
crops in the agricultural irrigation area were successfully 
established. Rapid detection of crop growth height could 
be achieved by data derived from a three-dimensional 
model. By extracting the characteristic line of the ecological 
irrigation canal, the extraction of the ecological irrigation 
canal is realized and the three-dimensional digital model 
of irrigation canal is established. The distribution of ecolog-
ical irrigation canals in agricultural irrigation areas can be 
accurately controlled by the irrigation canal digital model. 
The irrigation canal size derived from the irrigation canal 
digital model can calculate the water transfer capacity of 
irrigation canals. Through the above two aspects, the sup-
ply and demand analysis and rational distribution of water 
resources in the whole agricultural irrigation area can be 
realized, which meets the needs of precision agriculture 
and digital agriculture. The limitation of this paper is that 
only the extraction experiment of the irrigation canal in a 
specific area is carried out. In the future, LiDAR remote 
sensing will be more widely used in the extraction of eco-
logical irrigation canals and the reconstruction of crop 3D 
digital models. Moreover, owing to the flexibility of a multi-
rotor UAV in remote sensing operations in specific areas, 
a multi-rotor UAV equipped with a small LiDAR or opti-
cal image remote sensing system will be more suitable for 
remote sensing operations in the agricultural field [54,55].
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