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a b s t r a c t
Urine can be considered as a special type of effluent; it has a complex composition and high organic 
load. In recent years the need for improvements in the treatment of human waste has increased, 
for this reason, electrochemical oxidation is a practical and versatile technique to estimate urine 
degradation and aid in traditional methods of domestic wastewater treatment. This work aims to 
use artificial neural networks (ANN) to model urine mineralization kinetics through the electro-
chemical oxidation process under the influence of the main parameters such as current density (20, 
60 and 100 mA cm–2), initial concentration of the dissolved organic carbon (DOC) (1.75, 12.22 and 
22.7 g L–1) and reaction time (0 to 480 min). A three-layer neural network with 9 neurons was used 
in the hidden layer, where a score of mean squared error = 0.0021 and mean absolute error = 0.0345 
was obtained. The coupled ANN model and the genetic algorithm was used to find the best oper-
ational conditions: Percentage of normalized DOC (above 90%) at a current density of 89 mA cm–2, 
[DOC]0 of approximately 2.35 g L–1 and reaction time of 3.9 h.

Keywords:  Artificial intelligence; Urine mineralization; Anodic electrochemical oxidation; Modelling; 
Wastewater treatment

1. Introduction

World population growth and rapid urbanization have
increased the burden of domestic wastewater every day. One 
of the problems faced due to these factors is water scarcity, 
an increasingly common reality in many countries [1]. In an 
attempt to combat or reverse this situation, the interest in 
the treatment of domestic effluents for reuse has increased. 
In the composition of household waste, there are particu-
late or dissolved materials, various organic compounds and 
microorganisms.

The entire volume of these effluents is directed to 
water bodies such as rivers, seas and lakes, so efficient and 

appropriate treatment is required to minimize environmen-
tal impact. Many domestic effluents have a high organic 
load, which causes an increase in biological oxygen demand 
and a consequent decrease in available oxygen in the water 
for fish and other aquatic beings. In addition, substances 
such as phosphorus and nitrogen cause algal blooms that 
also affect the local ecosystem [2].

Urine can be considered as a special type of organic- 
laden household effluent. Within its complex composition, 
the organic fraction contains various substances such as 
salts, proteins, hormones, etc, [3,4].

Advanced oxidative processes (AOP) have been suc-
cessfully used for the mineralization of recalcitrant organic 
pollutants. This technology uses radicals to destroy complex 
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molecules of organic compounds and reduce them to car-
bon dioxide, water and inorganic salts [5]. The main rad-
ical produced is the hydroxyl radical (•OH) with the sec-
ond-highest has known oxidation potential of approximately 
2.8 V/SHE [6,7]. In addition to this radical, different chain 
reactions occur during the process with the formation of 
peroxides and other oxidizing agents (Eqs. (1)–(3)).

• • −+ +OH RX RX OH+→  (1)

• •OH + RH + H O2→ R  (2)

• •( )OH + PhX PhX OH→  (3)

Among the AOP, electrochemical oxidation (EO) is an 
estimated technique for the degradation of urine achiev-
ing a higher depletion of chemical oxygen demand and 
dissolved organic carbon (DOC), and complete deactiva-
tion of microorganisms [8]. In recent years the EO applica-
tion for the complete destruction of several pollutants has 
been growing [9–12], due to characteristics such as effi-
ciency in large concentration ranges, no generation of toxic 
intermediate components, easy automation, etc.

Due to the multicomponent character of urine and the 
complexity of the equations that govern advanced oxida-
tion processes, it is necessary to use techniques that assist 
in the study of the behavior of processes involving electro-
chemical oxidation or urine as effluent. More robust models 
are fundamental to deal with the nonlinearities inherent 
to the process, which is why the empirical-determinis-
tic approach has gained prominence in the simulation and 
optimization of effluent degradation processes [13].

Artificial neural networks (ANN) are an excellent alter-
native to simulate complex and nonlinear systems [14–18] 
because they do not need the mathematical description of 
the process phenomenon [19]. ANN is an artificial intel-
ligence technique considered a universal approximator, 
resulting from its self-learning, fault tolerance and adapt-
ability properties [18–23]. An ANN is an analogy to the 
functioning of the human brain, with multiple processing 
units (artificial neurons) distributed in parallel intercon-
nected layers [24,25]. Each connection between two artificial 
neurons is associated with a weight, represented by vector/
matrix [25]. Because it is an empirical model, it can adapt 
to the particularities of the problem under study, provided 
there is sufficient experimental information in different 
process conditions [26].

Simulating the behavior of a process is essential for its 
large-scale deployment. ANN can be employed to address 
this need. However, besides knowing the behavior of the 
process in the face of changing operating conditions, it is 
of interest to find optimal parameters to maximize its effi-
ciency. Thus, many studies have employed evolutionary 
algorithms to find the best results produced by trained 
ANN. The genetic algorithm (GA) is a search program 
inspired by the principles of natural selection, where the 
most capable individual survives and transfers his charac-
teristics (information) to future generations [25,27]. In GA 
the individual represents a possible answer to the problem, 

each individual is submitted to processes of reproduction 
(crossover) and mutation in an attempt to produce the best 
possible answer (optimization).

In this paper, we intend to present the ANN and the 
genetic algorithm as alternatives for the analysis of the 
model urine mineralization process through electrochemi-
cal oxidation. To simulate the urine electrooxidation process 
the operating parameters (current density, [DOC]0 and reac-
tion time) were used as ANN inputs and the mineralization 
kinetic was the output of the neural model. The importance 
of each entry was assessed in relation to the response by the 
Garson method. The genetic algorithm was used to search 
the universe of answers obtained by ANN to find the optimal 
values for the operational parameters, aiming to maximize 
the process efficiency.

2. Materials and methods

To perform the experiments initially a model urine 
solution was prepared to simulate the real effluent [28]. The 
following reagents were used: urea P.A., Quimex (Brazil); 
99% uric acid Sigma-Aldrich (German); creatinine 99% 
Neon (Brazil); tribal sodium citrate P.A. Vetec (Brazil); 
sodium chloride P.A. Neon (Brazil); potassium chloride 
P.A.-ACS Dynamic (German); ammonium chloride P.A. 
Synth; calcium chloride P.A. Synth; magnesium sulfate 
P.A.-ACS Synth; sodium bicarbonate P.A.-ACS Synth; 
sodium oxalate P.A. Neon (Brazil); sodium sulfate P.A. 
Dynamics (German); nuclear P.A. monophasic sodium 
phosphate; biphasic sodium phosphate P.A. Nuclear. 
The proportions used are described in Table 1.

To determine the model urine mineralization, the 
dissolved organic carbon values were obtained using 
Shimadzu TOC-LCPH equipment (USA). The obtained 
data were then used to estimate the DOC removal rate 
and consequently the mineralization kinetics of the 
compounds present in model urine.

According to Gozzi et al. [29], for solutions that present 
several organic compounds, such as the studied urine solu-
tion, it is necessary to multiply the number of electrons of 
each compound by their respective molar fraction, accord-
ing to Eq. (4). In the mineralization process, 9 electrons for 
urea, 22 electrons for uric acid, 28 for creatinine and 18 for 
trisodium citrate, according to reactions from (I) to (IV).

n x x x x x= + + + +9 22 28 18 92ureia ácido úrico creatina Citrato Trisódio EEstradiol  
 (4)

CH4N2O + 4H2O → CO2 + NO3
– + NH+

4 + 8H+ + 9e– (I)

C5H4N4O3 + 3H2O → 5CO2 + 2NO3
–  + 2NH+

4 + 22H+ + 22e– (II)

C4H9N3O2 + 12H2O → 4CO2 + 2NO3
–  + 2NH+

4 + 29H+ + 28e– (III)

C6H5Na3O7 + 5H2O → 6CO2 + 3Na+ + 15H+ + 18e– (IV)

2.1. Model solution and electrochemical treatment of urine

The model urine solution was divided into three 
categories according to their [DOC]0. The first called 
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concentrated urine, simulates the actual urine concentration 
without any dilution of the solution components. The sec-
ond represents the dilution of urine after flushing a domes-
tic toilet. A third, called intermediate, was used as a median 
of the other concentrations.

For electrochemical oxidation, a boron-doped diamond 
anode (BDD) and a steel cathode were used as electrodes. 
During the experiments, three current densities were 
analyzed: 20, 60 and 100 mA cm–². For each experiment, 
varying urine concentration or current density, the samples 
were collected to quantify dissolved organic carbon at times 
0, 5, 15 and 30 min, and after this period a sample was col-
lected at every hour until 8 h reaction time. The collected 
samples were diluted in ultrapure water at a ratio of 1:20 
before DOC analysis.

2.2. Neural model

For the development of the neural model was used the 
Anaconda package, using the features of Spyder 3.6 soft-
ware in Python language. The neural network was pro-
grammed with random initialization of weights and bias to 
avoid random initial correlation. The data obtained from the 
experiments were used to represent the electrochemical deg-
radation of urine. Of the experiment’s total (199 data points), 
70% of the data were reserved for neural network training, 
15% for the validation set and 15% for the test set [29].

The parameters of current density, [DOC]0 and reaction 
time were used as ANN inputs and removal of normalized 
DOC (Eq. (5)) as model output. These variables were con-
sidered to evaluate the process kinetically and the ranges 
of these variables are described in Table 2.

Removal of normalized DOC =
DOC
DOC

DOC
DOC

final

initial 0

=  (5)

For the modeling of the urine electrochemical oxidation 
process, a multi-layer perceptron (MLP) back-propagation 

neural network was created, consisting of three different 
layers of artificial neurons. In the input layer, the num-
ber of neurons equals the number of input variables, just 
as in the output layer the number of neurons equals the 
number of output variables of the model. Between these 
layers is an intermediate (hidden) layer whose neurons are 
responsible for processing information (Fig. 1). Each neu-
ron in the hidden layer connects to the neurons in the other 
layers by a vector product between the information con-
tained in the neuron and a weight representing the binding 
strength [25]. This relationship is described in Eq. (6).

Y WX bi
i

M
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





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1

 (6)

where Yi and Xi are the output and input data of the neu-
ron respectively, φ is the transfer function, M represents 
the number of input data, Wi the neuron weights and 
b the value of bias.

To define the best ANN architecture, training with dif-
ferent combinations of activation functions was performed 
for both the hidden and output layers (Table 3), as well as 
different training algorithms: Adam [30], Adagrad [31] and 
stochastic gradient descent. For this purpose, the number 
of hidden neurons, the mean squared error (MSE) and the 
correlation coefficient (R2), described in Eqs. (7) and (8), 
were used as a selection criterion.
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where n represents the number of data, Yexp is the experimen-
tal outputs, Ycal is the output calculated by the model and Ym 
is the average output value.

Once the architecture of ANN has been defined, new 
tests have been done to define the number of neurons in the 
hidden layer. The number of neurons was selected using 
as performance index the root mean square error (RMSE), 
mean absolute error (MAE), and mean absolute percent-
age error (MAPE) described in Eqs. (9)–(11). After this 
test, the optimized neural network obtained with the best 
combination of transfer functions, Training algorithm and 
number of occult neurons was used to predict the miner-
alization kinetic. All tests were repeated at least 10 times 
to ensure the representativeness of the data obtained.

Table 1
Composition of synthetic urine

Substance Chemical formula Concentration 
(mol L–1)

Urea CH4N2O 0.2000
Sodium chloride NaCl 0.0540
Potassium chloride KCl 0.0300
Ammonium chloride NH4Cl 0.0150
Sodium sulfate Na2SO4 0.0090
Trisodium citrate C6H5Na3O7 0.0050
Creatinine C4H7N3 0.0040
Monosodium phosphate H2NaO4 0.0036
Calcium chloride CaCl2 0.0030
Magnesium sulphate MgSO4 0.0020
Sodium bicarbonate NaHCO3 0.0020
Uric acid C5H4N4O3 0.0010
Disodium phosphate HNa2O4 0.0004
Sodium oxalate C2Na2O 0.0001

Table 2
Operating ranges of the main parameters analyzed

Variable Range

[DOC]0 (g L–1) 1.75–22.7
Current density (mA cm–2) 20–100
Reaction time (min) 0–480
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In order to optimize the operational parameters under 
analysis ([DOC]0, applied current density and reaction 
time) the genetic algorithm selected individuals as a set of 
neural model inputs. The predicted ANN response was 
evaluated and a new population was generated based on 
these responses (Fig. 2). For the construction of GA, the 
configurations elucidated in Table 4 were used.

The restrictions for searching the genetic algorithm 
were established according to the experimental conditions 
used for data acquisition. The current density limit was 
100 mA cm–2, the maximum time of 8 h, [DOC]0 of 1.75 g L–1 
and the maximum number of generations equal to 100.

3. Results and discussions

As previously mentioned, the database used for the 
development of the models (ANN_AG) was obtained from 

the evolution of the electrooxidation reaction (monitoring 
of the removal of normalized DOC) under different experi-
mental conditions of [DOC]0 and current density. Replicates 
were performed to allow evaluating the reproducibility 
of the process (Fig. 3). An experimental error of removal 
of normalized DOC of 13.72% was determined, within an 
acceptable margin of error.

Different ANN was developed for predicting mineraliza-
tion kinetic. Table 5 shows the results of ANN architecture 
optimization tests with different transfer functions and train-
ing algorithms.

Fig. 1. Representation of a three-layer multilayer perceptron 
network.

Fig. 2. Flowchart of optimization electrooxidation process 
based on artificial neural network and genetic algorithm.

Table 3
Algorithms of transfer functions used to select neural network 
architecture

Transfer function Algorithm

Linear – ‘linear’ linear(x) = x
Hyperbolic tangent – ‘tanh’ tansig(x) = 2(1 + exp(–2x)) – 1
Rectified linear unit – ‘relu’ relu(x) = max(x,0)

Table 4
Genetic algorithm parameters used to optimize operating con-
ditions

Settings Genetic algorithm

Number of variables 3
Population type Double vector
Population size 25
Scale function Rank
Selection function Stochastic
Elitism 2 individuals
Crossover rate 80%
Mutation rate 5%
Number of generations 100
Fitness function Trained artificial neural network
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In Table 5 it can be observed that the Adam algorithm 
[30] stands out against the other training algorithms for 
the prediction of synthetic urine electrochemical oxidation 
data. The best-suited transfer functions were the hyperbolic 
tangent between the input layer and the hidden layer, and 
the linear function between the hidden layer and the output 
layer. The choice of architecture is based on the responses 
of a low MSE value (0.0079) and a correlation coefficient 
capable of representing 91.63% of the experimental data.

The parameters obtained in the definition of the ANN 
architecture varied the number of neurons in the hidden 
layer from 3 to 20 neurons. The performance model was eval-
uated (Fig. 4) under the statistical RMSE, MAE, and MAPE 
values.

Fig. 4 shows higher error values in the first neurons, 
with the addition of new neurons in the occult layer gradu-
ally decreases the error until the 9th neuron. Inserting addi-
tional neurons after this condition increases the error value 
again, which could unnecessarily increase the complexity of 
the model and result in overfitting [32]. For this reason, the 
topology chosen for the database has 3 input layer neurons, 
9 hidden layer neurons and 1 output layer neuron (3:9:1).

Results achieved for MSE and MAE were 0.0021 and 
0.0345, respectively, from the architecture parameters 
shown in Table 6. Both performance indices presented val-
ues lower the calculated experimental error (Eq. (12)) equal 
to 0.1372. Fig. 5 shows the correlation between the simulated 
outputs by the network and the experimental responses. 
If the points are close to a straight line it means there is a 
strong correlation and a low prediction error [19,21,26].

Error exp cal

exp

=
−

=
∑
Y Y
Yi

n

1
 (12)

The proximity of the identity line to the points on the 
graph (Fig. 5) reflects the successful generalization of min-
eralization kinetics during electrochemical oxidation of syn-
thetic urine, denoting the ability to predict process perfor-
mance under different operating conditions.

Fig. 3. Evaluation of data reproducibility.

Table 5
Summary of test results for the optimization of artificial neural 
network architecture

Training 
algorithm

Hidden 
layer 
function

Output 
layer 
function

Mean 
squared 
error

R2

Adam

relu relu 0.0379 0.6350
relu tanh 0.0260 0.6571
relu selu 0.0279 0.4306
tanh selu 0.0212 0.7936
tanh linear 0.0079 0.9163
tanh relu 0.0191 0.8926
linear linear 0.0255 0.5797
linear selu 0.0398 0.6251
linear tanh 0.0188 0.7773

Adagrad

relu relu 0.1611 –0.4711
relu tanh 0.0929 0.1350
relu selu 0.1079 0.0292
tanh tanh 0.0455 0.3244
tanh linear 0.0604 0.5158
tanh relu 0.0533 0.4775
linear linear 0.1045 –0.3962
linear selu 0.0867 0.0480
linear tanh 0.1427 –0.3087

Stochastic 
gradient 
descent

relu relu 0.0810 0.3682
relu selu 0.0717 0.3338
relu linear 0.0410 0.6893
tanh tanh 0.0382 0.4637
tanh selu 0.0139 0.6936
tanh linear 0.0231 0.7041
linear linear 0.0434 0.5693
linear selu 0.0510 0.4894
linear tanh 0.0572 0.4082

Fig. 4. Selection of model artificial neural network from 
statistical indexes.
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In studies of electrochemical treatment of pollutants, 
it is essential to try to reproduce the reaction in conditions 
closer to the actual effluent. This criterion helps to ensure 
that the results found can be reproduced on a larger scale. 
Thus, all tests were performed at room temperature, so 
that during the experiments no chemical additive was 
used as a supporting electrolyte, since the urine solution 
itself contains inorganic ions, making electrooxidation 
possible in real conditions [4,28,33].

The salts present in the solution, in addition to contrib-
uting to conductivity, also contributed to the formation of 
secondary oxidants (Eqs. (V)–(X)), increasing the efficiency 
of the process [34]. Under these conditions, non-linearities 
about the process are common, due to the complexity of 
the matrix, diversity of electrolytes and organic compounds 
present in solution, the formation of intermediates and 
the performance of secondary oxidants.

2Cl Cl + e2
− −→  (V)

Cl H O HClO Cl H2 2
++ + +−→  (VI)

HClO H ClO+↔ + −  (VII)

2SO S O 2e4
2

2 8
2− − −+→  (VIII)

2PO P O 4e4
3

2 8
2− − −+→  (IX)

2CO C O 2e3
2

2 6
2− − −+→  (X)

These oxidizing species contribute to the degradation 
of organic compounds, together with the radical •OH, as 
they attack the bonds of organic molecules promoting the 
formation of smaller chain by-products. These second-
ary oxidants are also one of the main responsible for the 
non-linearities that occur during the mineralization process 
of organic compounds. The main factor for the formation 
of oxidizing species is the current density applied, there-
fore, this is one of the most relevant parameters for electro-
chemical oxidation. Fig. 6 shows the accuracy of the neural 
model developed for the simulation of urine mineralization 
behavior under different current densities and intermediate 
concentrations (12.22 g L–1).

It should be noted that the developed neural model was 
able to simulate the urine mineralization process under 
different operational conditions. As seen in the profile pre-
sented in Fig. 6, despite the multicomponent character of 
the matrix and the simultaneous influence of all secondary 
reactions, the neural model was able to accurately predict 
mineralization kinetics.

The Garson method (Eq. (13)) was used to calculate the 
relative importance of operating variables from the matrix 
of synaptic weights and bias generated by ANN. This equa-
tion can account for the individual contributions of each 
independent variable in the final answer.
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where Ij is the relative importance of the input variable in 
the output variable; Ni and Nh are the numbers of input and 
hidden neurons, respectively; W is the synaptic weight of the 
connections between the neural network layers; ‘i’, ‘h’ and 
‘o’ refer to the input, hidden and output layers respectively; 
‘k’, ‘m’ and ‘n’ refer to the number of input, hidden and 
output neurons, respectively.

From the Garson test (Table 7) all variables have a 
major contribution to the process. It follows from this that 
no variable could be neglected in the analysis of synthetic 
urine mineralization.

The coupled ANN model and genetic algorithm to pre-
dict the performance of the electrooxidation process used 
for urine treatment can be useful for scale-up. The goal of 
GA optimization was to find the maximum efficiency of 
DOC removal from urine. The generated individuals rep-
resent the combination of the three input variables of the 
model. Each optimal condition was evaluated according to 
the ANN response (fitness function). The optimal values for 
maximum urine mineralization found by GA were: current 
density of 89 mA cm–², [DOC]0 of approximately 2.35 g L–1 
and reaction time of 3.9 h, resulting in removal efficiency of 

Table 6
Topology and architecture parameters selected for the artificial 
neural network

Settings Artificial neural network

Number of inputs 3
Number of outputs 1
Number of hidden neurons 9
Transfer functions tanh, linear
Training algorithm Adam

Fig. 5. Experimental vs. predicted using the optimized multi-
layer perceptron network.
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total organic carbon (TOC) around 91%, close to that found 
by other authors who used electrooxidation for degradation 
of organic compounds [33,34]. Steter et al. [33] studied the 
electrooxidation process with electrogenerated H2O2 on site 
for removal of methylparaben using a BDD at a current of 
66.7 mA cm2 and reached a mineralization efficiency of 89%. 
In another study, Murugananthan et al. [34] applied this 
process for the mineralization of the hormone 17b-estradiol, 
under a current of 50 mA cm2, and reached 94% mineraliza-
tion efficiency. It is important to note that the initial TOC 
values of the studies by Steter et al. [33] and Murugananthan 
et al. [34] are much smaller (100 and 0.39 ppm, respectively) 
than the initial DOC value of the multicomponent synthetic 
urine solution used in our study (3,600 ppm). The results 
found in the work indicate that electrooxidation could be 
an effective alternative technique for the treatment of urine 
present in domestic wastewater treatment.

4. Conclusions

In this paper, we developed an empirical deterministic 
model using ANN to predict the efficiency electrochem-
ical mineralization of urine as domestic effluent. A classi-
cal ANN-based model was used, the MLP neural network, 
with 3:9:1 topology, Adam algorithm [30] and transfer func-
tions hyperbolic tangent and the linear function for the 
hidden and output layers, respectively. This configuration 

provides satisfactory model performance indices with low 
prediction errors and a high correlation index between 
predicted and experimental data (MSE of 0.0021, MAE of 
0.0345 and R2 of 0.9914). The optimization genetic algo-
rithm indicated a maximum urine percentage of normalized 
removal of 91% at 3.9 h reaction time, 89 mA cm–2 current 
density and [DOC]0 of 2.35 g L–1. This studied might con-
tribute to the industrial application of neural networks and 
genetic algorithms for monitoring and developing control 
strategies of the wastewater treatment process.
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