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a b s t r a c t
Phosphorus is an essential element of life but can lead to eutrophication if present above limit in 
waterways. Hydrous metallic oxides-based magnetic nanoparticle is considered as an easily sep-
arable adsorbent for efficient separation of phosphate from sewage. In this paper, superparamag-
netic particles consisting of hafnium-modified hydroxides loading on Fe3O4 multicores embedded 
in SiO2 matrix were synthesized (MgFeHf-NPs/MgAlHf-NPs) and the performance of capturing 
phosphate was investigated. The obtained nano-composites showed well-defined crystal struc-
ture and sufficient saturation magnetization. High phosphate adsorption capacity was observed 
with these NPs from solution as well as digested sludge liquor and dewatered sludge wastewater. 
These NPs also showed high selectivity with other co-existing ions and organics. The enhancement 
of phosphate adsorption capacity by doping with Hf should be explained by the stronger ligand 
complexation built by the pair of the hard acid Hf ion and the hard base phosphate that matched 
up the bonding preferences. MgAlHf-NPs and MgFeHf-NPs exhibited regeneration rates after 
five adsorption–desorption cycles compared with ordinary MgAl-NPs and MgFe-NPs. This paper 
attempts to provide a promising nano-sorbent for phosphate recovery. 
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1. Introduction

Phosphorus plays an important role in the process of 
biological growth and human development, and it is also a 
non-renewable resource. With the development and utiliza-
tion of global phosphate mineral resources, its storage and 

consumption rate has accelerated. High-grade phosphate 
rock reserves will be depleted in the coming decade [1]. 
Thus, recovering phosphorus from sewage wastewater is 
imperative and a feasible option against phosphorus crisis.

At present, struvite and hydroxyl calcium phos-
phate crystallization method is a widely used P-recovery 
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methods in practice [2,3]. However, the production of 
struvite requires harsh crystallization conditions and the 
pretreatment of qualified fertilizers is more complicated, 
which vastly obstructs its application [4,5]. The crystal-
lization method also requires the alkaline nature of the 
incoming water, therefore, increase the cost of dosing addi-
tional chemicals [6]. Moreover, the organic compounds in 
the sewage have an interferential effect on the crystalliza-
tion performance [7]. The produced chemical sludge also 
faces the disposal problem. The biological phosphorus 
removal methods including artificial wetland [8], anaero-
bic/aerobic (A2/O) process [9,10] and enhanced biological 
phosphorus removal process [11], etc. can efficiently trans-
fer the phosphorus from wastewater to the excess sludge. 
In recent years, the researchers have developed a variety 
of P-capture adsorbents, among which superparamag-
netic nanoparticles seemed promising due to their large 
phosphate uptake capacity, high selectivity in presence of 
coexisting foreign species, fast separation, and recyclabil-
ity [12]. These superparamagnetic nanocomposite material 
effectively turns “removal of phosphorus” into “recovery 
of phosphorus”, which fundamentally solves the prob-
lems of phosphorus pollution and shortage of phosphorus 
resources in water bodies.

Superparamagnetic nanocomposites are complexed 
matrix containing Fe3O4 core with high magnetization and 
hydroxide species, hydroxides or layered double hydrox-
ides (LDHs) on the surface, which serve as the center for 
phosphate adsorption [13]. The used composite can be 
washed and regenerated in caustic soda (NaOH) or KOH 
solution. Moreover, the magnetic P absorbents exhibited 
improved adsorption capacity after doping with oxides of 
transition metals or rare earth metals, such as lanthanum, 
zirconium, etc. [14]. For example, Drenkova-Tuhtan et al. 
[12] tested the superparamagnetic nanocomposite particles 
functionalized by Zn-Fe Zr adsorbent. Under the optimal 
conditions, the total phosphorus recovery efficiency can be 
more than 90%.

Lai et al. [15] loaded a trace amount of hydrated lan-
thanum oxide on Fe3O4@SiO2 (Fe-Si-La) to acquire adsor-
bent capability of magnetic separation. The established 
Fe-Si-La matrix improved the Langmuir adsorption capac-
ity of phosphate [15]. Zhang et al. [16] prepared magnetic 
nanoparticles with different Fe/Zr molar ratios. The effect 
of these adsorbents is highly pH dependent: the adsorption 
capacity decreases gradually in the pH range of 1.5–10 [16]. 
It seemed that doping with these metals might change not 
only the adsorption capacity and the reusability but also the 
adsorption behavior during adsorption–desorption cycles. 

Hf is a strong paramagnetic metal without negative 
environmental impacts. Besides, it is both hard Lewis acid 
and 5d-transitional metal of large size, therefore presum-
ably forming strong ligand complexation with phosphate. 
None of the previous studies have tried Hf-doped nano- 
sorbent to sequestrate phosphate from sewage. The research 
contents of the paper included (1) preparation and charac-
terization of superparamagnetic nano-adsorbents by load-
ing hafnium oxide on the surface of MgAl-NPs/MgFe-NPs 
Fe3O4@SiO2 NPs (denoted as MgAlHf-NPs/MgFeHf-NPs); 
(2) exploration of the phosphorus removal effect of NPs, 
including the adsorption efficiency, adsorption isotherm, 

and the effects of coexisting anions and biomacromole-
cules; (3) detection of desorption degree and regeneration 
efficiency of new magnetic separation adsorbent; (4) dis-
cuss the enhancement mechanism of the doped metals on 
the phosphate adsorption within the superparamagnetic 
nano-sorbent matrix; (5) compare the hafnium-modified 
NPs developed in this study and other superparamagnetic 
nano-sorbents reported previously.

2. Materials and methods

2.1. Synthesis of Hf-coated superparamagnetic NPs 

2.1.1. Synthesis of Fe3O4@SiO2 superparamagnetic NPs

Preparation of Fe3O4@SiO2 superparamagnetic micro-
particles requires two steps: synthesis of magnetite and 
coating with silica. Synthesis of magnetite was conducted 
according to co-precipitation method. Specifically, 8.64 g 
FeCl3·6H2O (Sinopharm Chemical Reagent Co. Ltd., 
Shanghai) and 3.18 g FeSO4·7H2O (Sinopharm Chemical 
Reagent Co. Ltd., Shanghai) (2:1 in molar ratio) were dis-
solved in 100 mL deionized water, which had been deox-
ygenated with a desiccator connecting to a vacuum pump 
for 30 min. Meanwhile ammonium hydroxide (Fuyu Fine 
Chemicals Co. Ltd., Tianjin) of 1.5 mol/L was added into 
the solution dropwise with stirring at room temperature. 
When the final pH value reaches 8, stirring was stopped, 
the black mixture was separated with magnetic force, it 
was washed with deionized water for three times, and it 
was dried in the freeze dryer. All the chemicals employed 
in the preparation step were all AR grade.

The suspension was mixed with 120 mL nitric acid 
(0.66 M; Huiyuan Fine Chemicals Co. Ltd., Laiyang). 
The solution was further stabilised by carboxylic acid. 
The resulting solution had a pH of 1–2. Ammonium 
hydroxide (88 mL of 25 wt.%) diluted in 80 mL deion-
ized water was added to the functionalised nanoparticle 
solution. After heating the blend to 70°C, sodium silicate 
was added (Damao Chemical Reagent Co. Ltd., Tianjin) 
solution drop by drop with syringe under stirring mole 
ratio: NH4OH:HNO3:Na2SiO3 = 27:1:0.4. After agitating for 
5 min, the silicified magnetite was magnetically settled and 
washed three times with deionized water. 

2.1.2. Synthesis of Hf-loaded hydroxides 

A certain amount of a combination of different metal 
salts such as MgCl2·6H2O (Sinopharm Chemical Reagent Co. 
Ltd., Shanghai), AlCl3·6H2O (Sinopharm Chemical Reagent 
Co. Ltd., Shanghai), HfOCl2·8H2O (Alfa Aesar Chemical Co. 
Ltd.) were dissolved in 100 mL deionized water to prepare 
precursor solutions of different hydroxides (40 wt.%; Table 1). 
The precursor solution was gradually put into 400 mL of a 
0.15 M NaOH solution for 5 min with uniform stirring and 
then adjusted the pH to 7 with HCl (Huiyuan Fine Chemicals 
Co. Ltd., Laiyang).

2.1.3. Loading hydroxides onto Fe3O4@SiO2 NPs

Different hydroxide liquid were mixed with silica coated 
magnetite dispersed suspensions prepared in section 2.1.1 
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for 60 s under stirring. The dispersions were subsequently 
placed into an ultrasonic bath (Kunshan Ultrasonic 
Instruments Co., Ltd.: KQ3200 V, 180 W, 35 kHz) for 100 s. 
Then, the solid phase, that is, the superparamagnetic NPs, 
was magnetically separated and washed with deionized 
water (twice) then lyophilized by a freeze dryer, and the 
powder is stored for subsequent characterization and 
adsorption/desorption test. The magnets employed were 
NdFeB permanent ring (Ø24*5) magnets with NiZn coating 
having a magnetic flux density of 1.26 T (Shanghai Shengci 
Magnetic Instrument Co. Ltd.).

2.2. Characterization of materials

The surface configuration of the materials was ana-
lyzed with scanning electron microscope (SEM, ZEISS 
Gemini SUPRA55, Oberkochen, Germany) with the energy 
dispersive spectrometer and transmission electron micro-
scope (TEM, JEM-2100). Prior to the observation, the 
samples were first pretreated by coating after dispersing 
them into ethal with sonication. The chemical composi-
tion was analyzed by X-ray fluorescence (XRF, Thermo 
Scientific Niton XL5, Waltham, USA) and the X-ray dif-
fraction analysis was also carried out (XRD, Smartlab). 
The NPs’ saturated magnetization was measured through 
plotting magnetization vs. magnetic field (M-H) curves 
with a vibrating sample magnetometer (Micro Sence EZ7).

2.3. Adsorption experiments

A certain amount of KH2PO4 (Sinopharm Chemical 
Reagent Co. Ltd., Shanghai) was dried in an electric blast 
drying oven (GZX-9140MBE) at 110°C for 3 h and then 
taken out. After KH2PO4 was added into a desiccator and 
cooled to room temperature, 2.1985 g was weighed and dis-
solved in water, and the volume was fixed to a 1,000 mL 
volumetric flask to obtain a phosphate stock solution of 
500 mg P/L. Other concentrations of phosphate solutions 
required in the experiment can be obtained from the stock 
solution. A batch adsorption test kinetic was conducted by 
exposing 0.05 g of dry mass of MgAl-/MgFe-/MgAlHf-/
MgFeHf-NPs, respectively, to a 100 mL aqueous solution 
(corresponding NPs dosage: 500 mg P/L) containing phos-
phate with concentrations ranging from 5 to 80 mg P/L. 
pH was adjusted at optimal value of 4.5 with 1 mol/L 
consistency of HCl or NaOH. The optimal pH value was 
pre-determined in a pH-dependent experiment (Fig. 1). The 
flasks were capped and shaken vigorously in a shaker at 
120 rpm for 1 h to reach adsorption equilibrium, which was 

pre-determined via an adsorption equilibrium test at room 
temperature (Fig. 2). Then the supernatant was decanted 
through a magnet and the phosphate concentration was 
determined by using the molybdenum blue method with 
UV-1780 spectrophotometer (Shimadzu, Kyoto, Japan) [17]. 
Thus, qe (mg/g), the amount of phosphate loaded per unit 
mass of adsorbent at the equilibrium, that is, the maximal 
adsorption capacity can be determined. The phosphorus 
abscission efficiency (%) also can be calculated.

The adsorption capacity for phosphate at diverse equi-
librium concentrations could be described by adsorption 
isotherms. To fit the balance information, Langmuir and 
Freundlich isotherm models were used, with equations 
defined as below: 

q
q K C
K Ce

m L e

L e

=
+( )1

 (1)

q k Ce f e
n= 1/  (2)

where Ce (mg/L) is the phosphate equilibrium concentration 
in aqueous phase. KL (L/mg) and kf ((mg/g)/(mg/L)1/n) 
are, respectively, the Langmuir and Freundlich adsorp-
tion equilibrium constants. n is a constant indicating the 
Freundlich isotherm curvature.

2.4. Effect of coexisting substances on phosphate adsorption

In the study on the competing effect of coexisting sub-
stances, phosphate with initial concentration of 5 mg/L 
was mixed with 10 mM Cl– (NaCl, Sinopharm Chemical 
Reagent Co. Ltd., Shanghai), 10 mM SO4

2– (Na2SO4, 
Sinopharm Chemical Reagent Co. Ltd., Shanghai), 10 mM 
CH3COONa (Sinopharm Chemical Reagent Co. Ltd., 
Shanghai), polysaccharide (100 mg/L sodium alginate, 
Merck, Darmstadt, Germany) and protein (100 mg/L bovine 
serum albumin, Merck, Darmstadt, Germany) solutions 
separately. 0.1 g MgAl-, MgFe-, MgAlHf-, MgFeHf-NPs 
were dosed into 100 mL of each mixture above. The solu-
tion pH was all controlled at about 4.5 with nitic acid (no 
competing effect confirmed by pre-test), and the contact 
time was 1 h. Then phosphate removal efficiency (%) with 
coexisting substances was calculated. 

2.5. Adsorption for digested sludge liquor (DSL) 
and dewatered sludge wastewater (DSW)

The Hf-loaded NPs were employed to treat the DSL 
and DSW, which was obtained from thermophilic digesters 

Table 1 
Preparation of metal ion precursor solution 

Sample MgCl2·6H2O AlCl3·6H2O FeCl3·6H2O HfOCl2·8H2O

MgAl 16 mmol 8 mmol – –
MgFe 17.4 mmol – 5.8 mmol –
MgAlHf 16 mmol 8 mmol – 8 mmol 
MgFeHf 17.4 mmol – 5.8 mmol 5.8 mmol 
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and full-scale WWTP. The relevant information about the 
reactors and water quality has been presented in our pre-
vious study (Table 4). DSL was obtained from the lab-scale 
thermophilic digesters (operating at 55°C), which were fed 
with excess sludge from A2O tank in a WWTP (Plant 1) in 
Liaocheng and a lab-scale EBPR reactor synthetic treating 
domestic wastewater (Plant 2) was, respectively, added. 
DSW was the filtrate from dewatering the DSL in plants 
1 and 2 with vacuum filter. 100 mL DSL, DSW in plant 1 
was blended with 0.3 g MgFeHf-NPs, acidified DSL/DSW 
plant 1 and DSL/DSW in plant 2 was mixed with 0.8 g 
MgFeHf-NPs, and acidified DSL/DSW plant 2 was mixed 
with 1.5 g MgFeHf-NPs. The organic phosphorus (or-P) 
and total dissolved phosphate (t-P) in decanted supernatant 
were measured for each pH value by standard method. Or-P 
in wastewater samples was determined by subtracting dis-
solved acid hydrolysable phosphorus and dissolved reactive 
phosphorus from total dissolved acid-digested phosphorus. 
The protein and polysaccharide of extracellular polymeric 
substances were determined by the Lowry method [18] 
and anthrone colorimetry [19], respectively. The specimen 
was leached through a 0.45 μm filter before analysis and 

adsorption test. The pH was measured using a pH elec-
trode (Leici PHS-25). The consistence of Fe3+, Ca2+, Mg2+, Al3+ 
and Zn2+ were then quantified using inductively coupled 
plasma atomic emission spectrophotometer (ICP-AES, iCap 
6300 DUO; Thermo Scientific, Waltham, MA, USA). All the 
analyses were performed in triplicates. 

2.6. Desorption and regeneration experiments

The desorption experiment was conducted with four 
types of phosphate-loaded nanoparticles, that is, 0.05 g 
MgAl-/MgFe-/MgAlHf-/MgFeHf-NPs, which have been 
contact with 5 mg P/L in adsorption test. After the adsorp-
tion reached equilibrium, these sorbents were separated 
with a magnet and washed with deionized water, desorp-
tion of adsorbed phosphate from the sorbent was done 
by adding 100 mL 2 M NaOH solution at 30°C. After 24 h 
contact and then a solid/liquid separation with a magnet 
again, the phosphate amount in the supernatant, marked 
as Q1 (mg) can be determined using the molybdenum blue 
method and recovery rate P1 can be calculated. Then the 
re-adsorption and re-desorption tests were repeated four 
times with retrieved nano-sorbents above by dosing them 
in 100 mL 5 mg P/L phosphate solution and regenerating 
them with NaOH solution again, repeating the proce-
dures above. For the ith cycle of adsorption and desorp-
tion test, phosphate recovered amount Qi and recovery 
rate Pi were calculated using the equation below:  

P
Q

ii
i=
×

=( )5 0 1mg/L L
1,2,3,...,10

.
 (3)

Finally, the recovery rate Pi for all the materials for 
each cycle was plotted in the form of heatmap. All the 
presented data are mean value of triplicate experiments.

3. Results and discussion

3.1. Structural characterizations of the microparticles

The chemical constitution of materials is listed in 
Table 2. The proportion (wt.%) of Mg, Al, Fe, Si and Hf in 
MgAlHf- and MgFeHf-NPs as well as the trivial impurities 
(<1%) implied the magnetites, hydroxides, including the 
hydrous hafnium oxides were successfully incorporated 
in the nano-sorbent. According to the data in Table 2, the 
mole ratio of Mg:Al:Hf was about 0.11:0.065:0.072, which 
was very close to the molar ratio of 2:1:1 in the precursor 
solutions employed in the synthesis step in section 2.1.2. 
Larger proportion of Fe in MgFe- and MgFeHf-NPs could 
be explained by the ferrous components in both hydroxides 
and magnetite cores. 

Surface structure of bare Fe3O4@SiO2, MgAl- and 
MgAlHf-NPs can be observed in the representative SEM 
and TEM micrographs in Fig. 3. The SEM and TEM pat-
tern of NPs are presented in Figs. 3a–g, respectively. All 
the types of composites had relatively regular shapes 
and smooth surfaces, without any noticeable difference 
among them except for seemingly rough surface for the 
Hf-coated ones. For both bare Fe3O4@SiO2 and nano-sorbent, 
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Fig. 1. Adsorption of phosphate on NPs as a function of pH 
variation. 
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Fig. 2. Adsorption equilibrium of phosphate adsorption on NPs. 
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Table 2 
Compositions and proportions of chemical elements in NPs revealed by XRF 

Samples Al (%) Mg (%) Fe (%) Hf (%) Na (%) Si (%) O (%) Cl (%) Other (%)

MgAl-NPs 2.06 3.37 25.50 0 2.55 1.91 62.94 1.47 0.20 
MgAlHf-NPs 1.75 2.65 26.29 12.94 1.13 0.84 52.48 1.72 0.21 
MgFe-NPs 0.21 3.60 32.03 0 1.55 1.81 58.62 1.91 0.27 
MgFeHf-NPs 0.13 2.44 25.89 8.28 5.94 0.82 51.18 5.15 0.18 
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Fig. 3. Characterization of the superparamagnetic micro-sorbents through SEM (a–e) and TEM (f–j) (a) a, f, bare Fe3O4@SiO2, 
(b) b, g, MgAl-NP, (c) c, h, MgFe-NP, (d) d, i, MgAlHf-NP, and (e) e, j, MgFeHf-NP.
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the diameter ranged from 10 to 50 nm, with shell thickness 
roughly estimated to be less than 10 nm. Although coating 
with silica as a layer and hydrous metal oxides resulted in 
a coarse surface; the original structure of magnetite was 
on the whole maintained. The particle size of the com-
posite material is small, and the particle size is between 
20 and 60 nm. The rough surface of composite can increase 
its specific surface area and enhance its adsorption capacity. 

Fig. 4 shows the XRD pattern of the composites. 
Specifically, strong peaks can be observed at 2θ values of 
30.8°, 35.4°, 43.1°, 57.7° and 62.8°, indicating the spinel char-
acteristic of magnetite (@SiO2) that has been reported by 
many studies [20,21]. As is shown by XRD patterns, after 
coating with hydroxides and Hf, no new peaks emerged 
and the peaks above were not significantly affected. The 
curve peak type in the figure was obvious and there were 
no disordered and new peaks, indicating the high the purity 
of the nano-material. It also showed that the supported 
SiO2, hydroxides, and Hf had no clear crystal structure [22]. 

According to M–H curves (not shown), the bare 
Fe3O4 had the greatest saturated magnetization value of 
79.44 emu/g, while the saturated magnetizations for MgAl-, 
MgFe-, MgAlHf-, MgFeHf-NPs were 45.90, 46.58, 41.63, 
42.07 emu/g, separately. Mesoporous silica coating led to 

the magnetization loss, and Hf loading resulted in a further 
loss. Nevertheless, saturation magnetization of 18–24 emu/g 
was reported to be sufficient to extract the particles 
from solutions with standard magnetic separation methods. 
And the Hf-coated superparamagnetic NPs seemed to pro-
cess higher magnetization than the reported Zr- or La-coated 
ones, therefore allowing easier magnetic separation.

3.2. Adsorption isotherms

Once the superparamagnetic particles were added 
to the sewage, phosphate diffuses from the bulk solution 
to the surface of the adsorbent, and phosphate adsorp-
tion occurs. When superparamagnetic particles adsorb 
phosphate, phosphate reacts with intermediate layer 
ions directly, which enhances the selective adsorption of 
phosphate [23,24]. In this study, Fe3O4@SiO2 showed little 
adsorption capacity for phosphate ions (data not shown), 
indicating oxide/hydroxide substances were the real cen-
ter that adsorption occurs while magnetite embedded in 
a SiO2 matrix acted as core and carriers. Fig. 5 presents 
the phosphate adsorption on the NPs plotted against dif-
ferent phosphate equilibrium concentrations, with fitting 
results and parameter values of Langmuir and Freundlich 
are obtained from Table 3. It can be inferred from the cor-
relation coefficient in the table that the isotherm figures 
were more propitious to the Langmuir equation for all 
types of adsorbents, which assumes monolayer coverage 
of a heterogeneous adsorbent surface. The functionaliza-
tion of hydrous hafnium oxide on the magnetite core-shell 
material caused the qm value of 22.69 and 23.09 mg/g for 
MgAlHf-NP and MgFeHf-NP, compared with 11.02 and 
11.39 mg/g for MgAl-NP and MgFe-NP. It shows that the Hf-
modified complex adsorbent has a larger adsorption capac-
ity and improves the adsorption selectivity to phosphate. 
Thus, Hf-loading changed the surface characteristic and 
enhanced the phosphate adherence onto the nano-sorbents. 

3.3. Effect of coexisting anions and biomacromolecules on 
phosphate adsorption by superparamagnetic NPs

The source of domestic sewage is complex, and usu-
ally there are different anions in sewage. The nano-sorbent 
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would inevitably encounter many complicated impurities 
in aquatic systems, which might compete with phosphate 
for adsorption sites on the surface of NPs. Taking digester 
liquor as an example, phosphate generally coexisted with 
short chain fatty acid, extracellular polymeric substances 
such as polysaccharide and protein [25]. The presence of Cl⁻ 
and SO4

2⁻ had insignificant effect on the adsorption of phos-
phate even if with higher concentration than phosphate [26]. 
To obtain pure targeted phosphate, the adsorption perfor-
mance of superparamagnetic NPs should not be essentially 
affected by other impurities. Preceding research investigat-
ing interferential effect mainly concentrate on the coexist-
ing anions, such as Cl–, SO4

2–, CO3
2⁻, etc. Superparamagnetic 

nanocomposites will preferentially adsorb these anions 
competing with phosphate, resulting in the decrease 
of phosphate adsorption capacity of the composite. 
Nevertheless, anions from short-chain aliphatic acid as well 
the hydrophilic groups on biomacromolecules in digester 
liquor might also have competitive effect on phosphate 
recovery. Herein, the effects of these foreign materials, Cl–, 
SO4

2–, CH3COO− (10 mM), polysaccharide (sodium alginate, 
100 mg/L, Yuanye Biological Technology Co. Ltd., Shanghai) 
and protein (bovine serum albumin, 100 mg/L, Yuanye 
Biological Technology Co. Ltd., Shanghai), on the phos-
phate adsorption were examined, with results manifested  
in Fig. 6. 

The incipient concentration of phosphate was 5 mg P/L 
(16 mM), 88.2%, 88.4%, 97.2%, 93.8% of which can be cap-
tured by 0.5 g/L MgAl-, MgAlHf-, MgFeHf-, MgAlHf-NPs, 
respectively. For MgAl- and MgFe-NPs, anions of SO4

2–, Cl–, 
CH3COO− (10 mM), even at much higher concentrations 
than that of phosphate, had no or slight effect on the phos-
phate adsorption. Biomacromolecules of protein and poly-
saccharide (100 mg/L) seemed having competitive effect 
for adsorption sites. In contrast, Hf-coated nanoparticles 
exhibited high selectivity toward phosphate ions, in spite of 
high concentrations of coexisting anions and biomacromol-
ecules. This clearly implied that the reaction mechanism of 
phosphate onto the nanoparticles were different from that of 
SO4

2– and Cl⁻ ions. As previous literatures stated, phosphate 
can be strongly adsorbed because of the ligand exchange, 
while SO4

2–, NO3
–, Cl– were adsorbed by electrostatic attrac-

tion [14,26]. The competing adsorptive behaviors of bio-
macromolecules onto the plain nanoparticles indicated 
the similar adsorption mechanism to that of phosphate. 
In contrast, Hf-coated nanoparticles showed high selectivity 
towards phosphate in presence of protein and polysaccha-
ride, indicating that hydrous hafnium oxide strengthened 

the ligand exchange of phosphate with the hydroxyl groups 
on the surface. Therefore, phosphate capture from the 
wastewater with high strength of sludge extracellular poly-
meric substances, for example, anaerobic digestion liquor, 
can be successfully realized with Hf-NPs. 

3.4. Phosphate uptake from DSL and DSW

For acidified DSL or DSW, large proportion of ortho-
phosphate solved during acidification can be recovered 
with Hf-NPs (Fig. 7). As indicated by Fig. 8, about 90% of 
phosphate were captured with Hf-NPs either from DSL 
or DWL (Fig. 8). Or-P seemed decreased little after treat-
ing with nano-sorbents. For example, orthophosphate 
and or-P in raw DSW (Plant 1), with original value of 43.6 
and 12.3 mg/L and were removed by about 90% and <1%, 
respectively, with 1 g/L Hf-NPs, rose to 176.1 and 14.5 mg/L 
at pH 4 (Fig. 7), and then treated with Hf-NPs, resulting in 
removal rates of 77.76% and <1%. Therefore, or-P seemed 
being excluded from the adsorption matrix due to the high 
selectivity of the nanoparticles. As a matter of fact, the most 
important factor greatly hindering the application of this 
material is the high cost on NPs consumption. According 
to our recent semi-continuous test with lab-scale phosphate 
recovery reactor dosing NPs, a total of 24.9 g of phospho-
rus could be produced from 1 m3 at the expense of dosing 
12.6 g similar nano-sorbent, that is, 13.8 RMB/m3. Therefore, 
more efforts should be devoted to developing more excel-
lent and cost-effective sorbents with large phosphate 

Table 3 
Langmuir and Freundlich equation parameters of phosphate adsorption onto (a) MgAl-NPs and MgAlHf-NPs and (b) MgFe-NPs 
and MgFeHf-NPs 

Types of NPs Langmuir Freundlich

qm KL R2 Kf 1/n R2

MgAl-NPs 11.0237 3.5466 0.9746 8.5999 0.0747 0.9922
MgFe-NPs 11.3932 7.8156 0.9799 18.2379 0.0699 0.9928
MgAlHf-NPs 22.6927 9.7295 0.9817 16.6420 0.1028 0.9899
MgFeHf-NPs 23.0940 8.1713 0.9803 8.9878 0.0696 0.9876
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Fig. 6. Effect of coexisting substances on the phosphate removal 
performance of NPs.
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uptake capacity, high selectivity, high magnetization 
for fast separation and high reusability in multiple cycles.

It is worth noting that adsorption capacity for DSL and 
DSW was roughly the same with the analog value indicated 
by the Freundlich model while the ones for the acidified 
DSL and DSW were all above the analog value, especially 
for the larger equilibrium concentrations. This implied 
that acidification pretreatment for sludge would contrib-
ute to higher phosphate uptake by Hf-NPs from DSL and 
DSW probably due to not only the solution of orthophos-
phate from raw sludge but also the low pH preference 
of the NPs. Lundehoj et al. [27] reported the LDH (lay-
ered double hydroxides)-based materials’ preference for 
acidic solution, and our research confirmed the similar 
adsorption behavior exhibited by hydroxides-based NPs.

Table 4 shows compositions of DSL and DSW before and 
after adsorption with La-nano-sorbents (La-NPs). It can be 
seen that Cl–, Mg2+ and pH increased slightly while other 
items, such as NO3

–, HCO3
–, SO4

2– and organic compositions 
were almost stable, suggesting the high selectivity of doped 
NPs towards phosphate in presence of other background 
ions. This clearly implied that the reaction mechanism of 

phosphate onto the nanoparticles was different from that 
of SO4

2– and Cl– ions [14,26]. Biomacromolecules, for exam-
ple, short chain fatty acid, extracellular polymeric sub-
stances such as polysaccharide and proteins, also showed 
no significant interferential effect on phosphate adsorption, 
although some of these biomacromolecules might form 
complicated intermolecular network or even be capable of 
being separated by NiAl-nanoparticles [28–30].

3.5. Role of Hf: mechanism analysis for adsorption 

As for the superparamagnetic particle sorbents, the 
hydroxides-based NPs showed different structure as indi-
cated by the TEM, SEM, XRD patterns [29]. But they con-
tained hydroxyl groups on the surface or interlayer space, 
which can adsorb phosphate ions by mechanisms of elec-
trostatic attraction, ligand complexation and/or surface 
precipitation [31]. It has been widely in presence of other 
anions such as Cl−, NO3

− and SO4
2– that were adsorbed by 

electrostatic attraction [32,33]. The high selectivity showed 
in section 3.3 suggested that ligand reaction might have 
also took the main responsibility for hydroxides-based NPs. 
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Fig. 7. Or-P and o-P concentrations in DSL and DSW before and after acidification treatment.
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Moreover, Hf’s role in strengthening phosphate adsorption 
can be explained by the theory of hard and soft acids bases. 
Ligand complexation was believed to be the dominant 
mechanism for phosphate adsorption since NPs showed 
high selectivity towards phosphate, which can be consid-
ered as the formation of acid-base complexes – A:B (A+:B-
---A:B), where A is an electron accepter or electrophile, 
regarded as the acid and B is the electron donor, regarded 
as the base. Acid and bases can be labelled as hard or soft 
according to their charge, size, polarization or other char-
acteristics [34]. The combination  of hard–hard or soft–soft 
could establish extra stabilization. Generally, cations of 
Mg2+, Fe3+, Al3+ were harder acid than the transitional metal 
ion Hf4+, and meanwhile phosphate ions were relatively 
softer base than Cl–, SO4

2–. Therefore Hf4+ and phosphate 
in this study seemed a pair that matched up the bonding 
preferences, forming stronger ligand complexation [35]. 

3.6. Desorption, regeneration and reusability 

The repetitions of phosphate adsorption/desorption 
for different types of NPs are shown in the heatmap in  
Fig. 9. For the first cycle, the phosphate recovery rates were 
92.7%, 96.0%, 92.0% and 96.5% for MgAl-, MgAlHf-, MgFe-, 
MgAlHf-NPs, respectively. The desorption amounts were 
very close to the uptake amount in adsorption test for all 
the nano-sorbents. Thus, it can be inferred that a complete 

desorption (100%) was almost achieved on each material via 
3 M NaOH at 30°C. The adsorption capacities of the retrieved 
nanomaterials decreased with cycles of regenerations, lead-
ing to the decreasing recovery rates correspondingly. After 
five cycles of adsorption and desorption, Hf-modified 
nano-sorbent still can achieve recovery rate of 80%, the 
mass loss of the material during the cycle resulted in about 
20% loss of adsorption capacity, while plain nano-sorbent 
would suffer from nearly 50% of loss due to limited adsorp-
tion capacity. It was probably due to the stronger binding 
between Hf and phosphate during the adsorption stage, 
and complete release and recovery resulted from sufficient 
OH concentration and clear pH shift during the desorption/
regeneration. This phenomenon was consistent with previ-
ous literatures that caustic alkalinity was one of the import-
ant factors that influenced phosphate release and desorp-
tion rate [36]. Sufficient dose of nano-sorbent, high level of 
pH as well as high temperature can ensure high efficiency 
of P-uptake and recovery [37]. Besides, the poorer perfor-
mance after cycles of reaction was caused by both NPs loss/
leakage and increasing “inert adsorption site” which might 
have resulted from incomplete desorption or regeneration.

4. Conclusions

This work proposes that a novel magnetically sepa-
rable and reusable Hf-hydroxide-based nano-sorbent to 

Table 4 
Compositions of DSW and DSL before and after adsorption with MgAlHf-NPs

Item (mg/L) Raw  
DSL

After  
Adsorption

Raw  
DSW

After  
Adsorption

Acidified 
DSL

After  
Adsorption

Acidified  
DSW

After  
adsorption

Plant 1 

HCO3
– 75.6 79.2 100.6 102.8 NDa ND ND ND 

Cl– 81.0 90.1 217.4 228.9 127.9 125.3 260.4 263.3 
SO4

2– 29.4 28.2 35.8 34.0 27.3 26.9 34.1 33.4 
NO3

–  ND ND 12.57 11.2 ND ND 10.5 9.8 
Fe3+ 6.6 6.9 2.9 3.0 8.7 9.4 12.0 10.1 
Ca2+ 5.4 6.0 6.2 6.6 29.5 28.6 44.9 48.5 
Mg2+ 0.1 0.1 1.0 1.4 8.1 12.9 7.6 16.7 
EPS Protein 25.6 25.1 44.2 44.0 132.4 129.8 142.6 138.2 
Polysacc-haride 23.8 22.9 43.8 42.5 120.5 120.3 128.3 127.2 
pH 6.8 7.6 6.7 7.6 3 3.6 3 3.6 

Plant 2 

HCO3
– 39.4 42.5 102.0 103.1 ND ND ND ND 

Cl– 173.9 177.0 120.3 123.4 231.6 235.2 163.5 164.9 
SO4

2–  10.7 9.4 12.4 11.8 9.7 7.3 8.7 5.6 
NO3

– ND ND ND ND ND ND ND ND 
Fe3+ ND ND ND ND ND ND ND ND 
Ca2+ 1.3 1.2 3.5 3.7 51.8 51.7 27.3 29.1 
Mg2+ 2.2 2.7 3.0 3.0 16.5 16.1 25.3 25.7 
EPS Protein 132.7 131.6 159.0 157.7 328.2 325.5 319.4 318.2 
Polysaccharide 102.4 100.3 119.1 115.6 372.0 368.1 396.1 397.0 
pH 6.6 6.9 6.6 7.0 3 3.2 3 3.3 

aNot detected.
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efficiently capture and recover phosphate from sewage and 
superparamagnetic nanocomposites with better phosphate 
adsorption effect are prepared by the improved microwave 
hydrothermal method. The NPs were successfully prepared, 
exhibiting crystal structures as well as sufficient saturated 
magnetization value for fast separation in magnetic field. 
The isotherm data were better fitted to the Freundlich 
model than Langmuir model for all types of NPs. The iso-
therm data indicated that Hf-loading changed the surface 
characteristic and improved the phosphate adherence onto 
the NPs. Besides, the competing anions and biomacromol-
ecules had little effect on the phosphate adsorption. These 
NPs showed good performance of recovering phosphate 
from in DSL and DSW. The Hf-modified NPs’ high adsorp-
tion capacity and selectivity toward phosphate ions should 
be attributed to the fact that hard acid Hf4+ and hard base 
phosphate matched up the bonding preferences and there-
fore formed stronger ligand complexation. The MgAlHf/
MgFeHf-NPs were competitive in terms of adsorption 
capacity, selectively and reusability. Based on the concept 
of “energy self-sufficiency and resource recovery” in sew-
age treatment, this study increased the reuse of phosphorus 
resources and realized the optimal allocation of resources.
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