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a b s t r a c t
The aim of this work was to use artificial neural networks (ANN) and multiple linear regressions 
(MLR) models to predict the soluble sulfate content in drinking water. A set of 84 data points were 
used. For the ANN, 18 neurons were used in the input layer, 8 neurons at hidden layer, and 1 was 
used in the output layer. Levenberg Marquardt learning (LM) algorithm with hyperbolic tangent 
sigmoid transfer function logarithmic was used at the hidden and output layer. The compari-
son of the obtained results in term of root mean square error (RMSE) and correlation coefficient 
(R) using the ANN and MLR models revealed the superiority of the (ANN) model in predicting 
the soluble sulfate content in drinking water. Indeed, the statistical results showed a correlation 
coefficient R = 0.99973 with RMSE = 5.9755 for the ANN model and R = 0.941 with RMSE = 88.3068 
for the MLR model. A nonlinear relationship between the soluble sulfate content and the physi-
co-chemical characteristics of drinking water (conductivity, turbidity, potential hydrogen, hardness, 
calcium, magnesium, chlorides, total alkali metric titre, material organic, nitrogen dioxide, 
nitrates, sodium, bicarbonate, potassium, heavy metals (Mn2+, Fe3+, and Al+) and dry residues) 
was demonstrated, showing that the soluble sulfate content concentration can be predicted.

Keywords:  Drinking water; Physico-chemical parameters; Sulfate; Modeling; Artificial neural 
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1. Introduction

Water is a basic element for the sustainable develop-
ment of the city. Drinking water is essential for human 
survival and regional stability [1]. Thus, water quality is 
an extremely important environmental factor as it affects 
human beings and their economic activities [2]. The main 

factor that affects the physical appearance such as the 
color of the water is the concentration and distribution 
of suspended fine components and dissolved matter [2]. 
Industrial, agricultural, and urban development is alter-
ing water quality and making it unsafe. This is the case 
of the Medea region, which is subject to various types of 
pollution and an increase in the quantity of pollutants 



H. Tahraoui et al. / Desalination and Water Treatment 217 (2021) 181–194182

released into the aquatic environment without treatment. 
Depending on the origin of the waste, the pollution can 
be of a chemical nature. Water quality tends to degenerate 
progressively with human interventions, such as hydro-
logical alterations [3], land-use changes [4], inputs of toxic 
chemicals, and nutrients [5] and changes in other physi-
co-chemical properties of water [6] this causes a range of 
environmental problems, such as the soluble sulfate con-
tent in drinking water levels. The soluble sulfate content 
in drinking water is ubiquitous and can be found not only 
in natural waters, but also in industrial wastewater [7,8]. 
Although the soluble sulfate content in drinking water is 
generally not considered a health problem, concentrations 
of soluble sulfate content in drinking water can cause a 
bitter taste and can cause diarrhea when its concentration 
exceeds 600 mg/L [9]. The release of high levels of sulfate 
can significantly affect the water supply by causing corro-
sion and/or scaling of pipes and equipment. In addition, 
hydrogen sulfide (H2S), which is toxic to the ecosystem, 
could be produced by sulfate reduction by sulfate-reducing 
bacteria under anaerobic conditions [10]. Because of these 
adverse effects on human health and the environment, 
many countries have set maximum soluble sulfate content 
in drinking water concentration values ranging from 250 to 
500 mg/L, depending on the end-use of the water source 
[8]. Traditional methods of measuring and studying water 
quality are both time-consuming and costly compared to 
numerical modeling techniques, especially if they deal with 
large areas. Recently, many authors have studied param-
eters affecting water quality using artificial intelligence. 
Several works have found great success in the simulation 
and prediction of environmental parameters [11] such as 
the prediction of several environmental parameters dealing 
with water quality in rivers of different countries [12–18], 
the prediction of the indicators of quality water for urban 
source management [19], analysis of surface water quality 
and identification of key water parameters [20], prediction 
of water quality via Escherichia coli levels [21], prediction of 
soil hard-setting, and physical quality using water retention 
data [22] and the prediction of phosphorus and total nitro-
gen for lake in Egypt [23]. In particular, artificial neural 
networks (ANNs) are a method for approximating complex 
systems, especially useful when these systems are difficult 
to model using classical statistical methods [24]. ANNs pro-
vide interesting results due to their learning capability [25], 
their parallelism, and their ability to solve many non-linear 
system problems [26]. Over the last decade, ANN research 
has been applied in the fields of hydrology, ecology, and the 
environment. ANN models have been shown to perform 
better than other models, the prediction of water quality 
[27]. ANN models have been requested for a variety of pur-
poses; for example, for variations in water quality attributes 
[28], for prediction of water quality parameters [29–33], 
for prediction of water quality indices [34], for estimation 
of lake water quality using satellite images [35], to study 
water quality parameters of the Axios River in Northern 
Greece [36], to model nitrate concentrations in rivers [37], 
prediction of annual drinking water quality reduction 
based on groundwater resource index [38], prediction of 
the groundwater remediation costs for drinking use based 
on the quality of water resources [39]. In addition, the 

evaluation of multivariate linear regression and ANNs for 
predicting water quality parameters were examined [40].

The main objective of this research was therefore to 
conduct a comparative study between multiple linear regres-
sion (MLR) and ANN for the prediction of soluble sulfate 
content in drinking water in the Médéa region in Algeria.

2. Materials and methods

2.1. Database

The data used for this study were obtained from the 
experimental analysis of water samples taken during sev-
eral sampling times during the period 2018 in the region 
of Médéa, Algeria (three samples per week from different 
regions). Analyses were done according to Jean Rodier’s 
book of water analysis 9th edition [41].

The dependent variable was the soluble sulfate con-
tent in drinking water. The independent variables were the 
physicochemical parameters: conductivity, turbidity, poten-
tial hydrogen, hardness, calcium, magnesium, chlorides, 
total alkali metric titre (TAC), organic material, nitrogen 
dioxide, nitrates, sodium, bicarbonate, potassium, heavy 
metals (Mn2+, Fe3+, and Al+), and dry residues.

2.2. Prediction methods

Several methods were applied to address problems 
related to prediction and modeling of complex nonlinear 
systems. These methods are particularly useful when these 
systems are difficult to model using classical methods [42]. 
In this study, we were interested in the use and the com-
parison of two methods for predicting the soluble sulfate 
content levels from the physicochemical parameters in 
drinking water. These methods are MLR and ANNs.

The data are divided into three phases (70% learning, 
15% testing, and 15% validation) according to the ANN 
model to compare the correlation coefficients and the errors 
between the two models [43].

2.2.1. Multiple linear regressions

MLR consists in describing the relationships between 
a dependent variable y and several variables called inde-
pendent variables x1,x2,…,xi,…,xn, where n is the number 
of independent variables. Indeed, the MLR, which is a data 
analysis method, is commonly used for establishing pre-
dictive models to the phenomena observed in the aquatic 
environment [44]. This method allows to draw a poly-
nomial function describing the relationship between the 
dependant and the independent variables and allows to 
determine the most significant input variables. The model 
can be written as in Eq. (1).

y x x x x xi i n n= + + + + + + +β β β β β ε0 1 1 2 2   ( )  (1)

where n is the number of independent variables;  
ε(x): random noise (error term or regression residual); 
y: dependent variable; x1,x2,…,xi,…,xn are the independent vari-
ables; β0: estimated ordinate at the origin; β0,β1,…,βi,…,βn 
are the model coefficients.
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2.2.2. ANN model

ANNs provide an alternative to mathematical model-
ing and they can be classified as nonparametric nonlinear 
models [45,46].

The neuron is the fundamental cell of an ANN, which 
can be considered as an elementary parallel operating 
processor. It is a computation unit which receives a num-
ber of inputs (xi) directly from the environment or upstream 
neurons (Fig. 1). When information comes from a neuron, 
a weight is given to this latter which represents the abil-
ity of the neuron upstream to excite or inhibit the neuron 
downstream through its unique output passing by the 
activation function [47,48].

The neuron’s output is calculated using Eq. (2):

S f w X bJ
i

N

ij i j= +










=
∑

1

 (2)

where wij, is a synaptic weight, bj is the bias input and Xi the 
ith input. f is the activation function which can usually be 
sigmoid or hyperbolic tangent [24].

Neurons can be connected together in a way to form a 
multilayer ANN. This latter is composed of an input layer, 
an output layer, and one or more hidden layers. All the neu-
rons of a layer are connected to all neurons of the following 
layer through synaptic weights [49,50]. In Fig. 2, an exam-
ple of an ANN with one hidden layer is given where each 
neuron (Fig. 1) is represented by a circle.

The goal is introduce to the input and output data 
of the ANN and make it learns the relationship between 
them by a process called learning using specific algorithms 
like backpropagation or Levenberg–Marquardt [51]. The 
goal is to minimize the error between the model output 
and the desired output by adjustment of synaptic weights.

To obtain the optimal structure of the neural network, we 
implement a strategy based on the design and optimization 
of the architecture of the neural network.

The development of the neural network model entails 
the following stages [24,52]:

(1) Collecting the experimental data.
(2) Define the input variables and the corresponding 

output variables.

(3) Pre-treatment and analysis of the data.
(4) Scaling and splitting of data for the phases of learning 

(with or without test) and validation.
(5) Selection of a neural network model.

 The selection of the ANN model is affected by four 
major factors:
5-1: Network type (recurrent networks, feed-forward 

backpropagation, wavelet neural network, radial 
basis functions, etc.). In our work, we use the 
feed-forward back propagation neural network.

5-2: Network structure (number of hidden layers, num-
ber of neurons per hidden layer).

5-3: Activation functions.
5-4: learning algorithm. In our work, we use Levenberg–

Marquardt learning (LM) algorithm.

First, transformation must be done in order to modify 
the distribution of input variables so that they can better 
match outputs. Before learning and validation, the inputs, 
and targets are scaled using a normalized equation (Eq. (3)) 
such that the data always fall within the interval [–1, 1] [53].

x y y
x x
x x

yN = −( ) −
−









 +max min

min

max min
min  (3)

where xN is the data value after normalization, xmax and 
xmin denote the maximum and the minimum of the data 
respectively; ymax and ymin are taken as 1 and –1; x denotes 
the data in question.

Data modeling was carried out by an ANN, 70% of the 
dataset, chosen randomly among the totality of the sam-
ples, were used for the learning phase. The remaining 30%, 
which did not participate in model learning, were divided 
into two parts (15% for the test and 15% for the validation) 
to examine the validity and performance of the prediction 
of these models [54].

2.3. Statistical evaluation criteria

The correlation coefficient (R), the adjusted coefficient 
R2

adj, the root mean square error (RMSE), the mean 
square error (MSE), and the mean absolute error (MAE) 
were used out to estimate the performance of the model. 

Fig. 1. Artificial neuron model.
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The corresponding values are calculated using the 
equations [55,56]:
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where N is the number of data; K is the number of vari-
ables (inputs); yex and ypr are the experimental and the 
predicted values respectively; ӯex and ӯpr are, respectively, 
the average values of the experimental and the predicted 
values [57–59].

The significance level value p and the F-ratio value 
which provide a measure of the statistical significance of 
the regression model were also determined. A high value 
of F with a minimum value of p means that the equation is 
significant [43].

3. Results and discussion

ANN and MLR are the two approaches, which were 
used for the prediction of the soluble sulfate concentration 
from the physicochemical parameters of drinking water. 
The two methods were performed and evaluated and then 
compared.

3.1. Multiple linear regression

A statistical analysis by the MLR method was performed 
using the “XLSTAT 2016” software on the database set. 
This method makes it possible to find the mathematical 
polynomial relation (Eq. (9)) between the soluble sulfate 
content and the independent variables, which corresponded 
to the physico-chemical parameters from 84 experimen-
tal samples. First, the equation takes into account all 18 
variables (Table 1), even those that do not seem to have a 
significant impact on the dependent variable. The relation 
obtained was therefore evaluated in order to keep only 
the independent variables which were characterized by a 
high probability value (Table 1).

y xi i
i

= +
=
∑β β0

1

18

 (9)

where βi and xi are given in Table 1.
Then, only six independent variables which have a 

high power of explanation for the dependent variable 
were taken (Pr < 0.05); thus the relation can be reduced 
to Eq. (10):

y x ii i
i

= + × =
=
∑β β0

6

18

6 7 8 10 12 18for and only, , , ,  (10)

Indeed, the coefficients of each factor in the model 
make it possible to assess the impact of each factor on the 
response [60]. From Eq. (10), it is evident that changes in 
magnesium and sodium in drinking water increase the dose 
of sulfate. On the other hand, changes in chlorides, TAC, 
nitrogen dioxide, and bicarbonate dominate the sulfate dose.

The value of the coefficient of determination decreased 
slightly, but the equation became more simple after the 
elimination of low-explanatory variables from the depen-
dent variable. The result of the learning phase shows 
an acceptable efficiency, via their correlation coefficient 
(Fig. 3) (R = 0.93795), but poor in terms of mean square error 
(RMSE = 84.0254 mg/L) and MAE (MAE = 48.6575 mg/L) 
(Table 2). The result of the learning phase was tested and 
validated by two databases, one for the test and the other 
for the validation. The results showed an acceptable correla-
tion coefficient for the test phase (Fig. 3) (R = 0.92066) and a 
high correlation coefficient for the validation phase (Fig. 3) 
(R = 0.97100). However, in terms of RMSE (RMSE = 117.933 
and 70.5674 mg/L) and absolute error mean (MAE = 61.8972 
and 46.6106 mg/L), they always remained bad for the test 
and the validation phase, respectively (Table 2). The three 
steps were combined for the final evaluation of this model 
which gave an acceptable correlation coefficient (R = 0.941) 
(Fig. 3), but poor in terms of RMSE (RMSE = 88.3068 mg/L) 
and MAE (MAE = 42.3274 mg/L) (Table 2). In view of the 
obtained results, we can consider that the correlation of the 
model was a little positive via the acceptable correlation 
coefficient; while the statistical evaluation criteria remained 
high. The probability (Pr < 0.0001) was strictly less than 
0.5% which confirms that the model was significant [11,43].

Results of MLR performances in terms of all errors and 
in terms of the agreement vector values (R, slope: α and y 
intercept: β) are given in Table 2.
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Fig. 2. Multilayer neural network.
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3.2. ANN Modeling

Preliminary tests showed that to improve the perfor-
mance of a model established by ANN, it is necessary to 
modify the architecture of the network, by changing mainly 
the number of hidden layers, the number of hidden neurons, 
and/or the number of learning cycles (number of iterations). 
For this, we successively changed the number of hidden 
neurons (from 3 to 15). The results of these tests are shown 
in Table 3.

Table 3 presents the best architectures found. It shows 
the correlation coefficients and the error for each learning, 
test, and validation according to the number of neurons in 
the hidden layer and the network topology. It also indicates 
the activation functions for the hidden layer and the out-
put layer. Architecture 3 (Table 3) appears to be the most 
relevant ANN model to predict the soluble sulfate content.

The network was driven until reaching over-learn-
ing; this phenomenon was met after 1,000 iterations. 
The over-learning phase was not yet reached, so it was 
interesting to continue learning until reaching this phase 
for the test in order to decrease the gradient further and 

thus improve the precision of the ANN. Using the third 
architecture of Table 3, the three curves related to the evo-
lution of the MSE corresponding to the three learning 
phases were obtained (train, validation, and test) where they 
converge correctly toward a satisfactory minimum (Fig. 4).

Once the architecture of the ANN is synthesized, it 
is tested and the predicted values (estimated values) are 
compared to the experimental values in the three steps of 
learning phases; the corresponding results are given in Fig. 5.

The relation between the observed values and the 
estimated values shows the performance and efficiency 
of the developed ANN model. The relevance of the model 
was confirmed by the obtained coefficient of determination 
R = 0.9996 for the total data set.

3.3. Prediction performance

The result of the learning phase shows excellent effi-
ciency, via their very high correlation coefficient (Fig. 6) 
(R = 0.99963), also very low values in terms of the MSE 
(RMSE = 6.5382 mg/L and the MAE (MAE = 4.2437 mg/L) 
(Table 4). The result of the learning phase was tested and 

Table 1
Values of βi, xi, and characterization of independent variables of the RLM

i xi βi Standard  
error

T ratio Prob. > |t|

0 Constant 245.4060 435.0382 0.56 0.5746
1 Conductivity (Cond) –0.0576 0.0676 –0.85 0.3976
2 Turbidity (NTU) 4.3994 4.8354 0.91 0.3663
3 Potential hydrogen (PH) –28.6495 55.9304 –0.51 0.6102
4 Hardness (TH) 0.0700 2.4603 0.03 0.9774
5 Calcium (Ca) 1.7242 0.8677 1.99 0.0511
6 Magnesium (Mg) 4.1885 1.2180 3.44 0.0010
7 Chlorides (Cl) –1.1275 0.1141 –9.88 <0.0001
8 Total alkalimetric titer (TAC) –0.7729 0.2281 –3.39 0.0012
9 Organic materials (MO) 0.4933 0.4757 1.04 0.3035
10 Nitrogen dioxide (NO2) –3,722.542 1,532.262 –2.43 0.0179
11 Nitrates (NO3) 0.2332 2.4743 0.09 0.9252
12 Sodium (Na) 1.8031 0.2533 7.12 <0.0001
13 Potassium (K) –3.3927 4.1309 –0.82 0.4145
14 Manganese (Mn) –5,154.41 19,918.46 –0.26 0.7966
15 Iron (Fe) 135,558.938 18,425.29 0.74 0.4644
16 Aluminum (Al) 213.5702 447.0937 0.48 0.6345
17 Dry residues (Rs) 0.0828 0.0713 1.16 0.2500
18 Bicarbonate (HCO) –0.6784 0.1533 –4.42 <0.0001

Table 2
Performances of the prediction using MLR

RMSE (mg/L) MAE (mg/L) R α β

All 88.3068 42.3274 0.941 0.8859 46.480
Training 84.0254 48.6575 0.93795 0.9211 27.6758
Test 117.9331 61.8972 0.92066 0.7820 110.3162
Validation 70.5674 46.6106 0.97100 0.8464 77.2335
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Fig. 3. Comparison between experimental and calculated values obtained by multiple linear regression.

Table 3
Performances of the different tested ANN architectures

ANN Activation function Coefficients of correlation MSE

Nbr Neurons/
Layer

Hidden layer Output layer Learning Test Validation Total Learning Test Validation

1 [18–9–1] tansig purelin 0.99809 0.99964 0.99965 0.99863 2.34 × 10–4 6.12 × 10–5 7.15 × 10–5

2 [18–13–1] logsig purelin 0.99961 0.99618 0.99723 0.99873 5.47 × 10–5 5.27 × 10–4 3.32 × 10–4

3 [18–8–1] tansig tansig 0.99953 0.99978 0.99992 0.9996 7.36 × 10–5 2.55 × 10–5 9.79 × 10–6
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validated by two databases, one for the test and the other 
for the validation; the result showed a very high correla-
tion coefficient (R = 0.9998, 0.9999) for both phases (test 
and validation), respectively (Fig. 6), also very low val-
ues in terms of RMSE (RMSE = 5.4650 and 3.1826 mg/L) 
and MAE (MAE = 3.5362 and 1.9667 mg/L) for the test 
and the validation phases respectively (Table 4). The three 
steps were brought together for the final evaluation of 
this model which gave a very high correlation coefficient 
(R = 0.99973) (Fig. 6), and also led to very low values in 
terms of mean squared error (RMSE = 5.9755 mg/L) and 
MAE (MAE = 3.1767 mg/L) (Table 4). In view of the obtained 
results, we can consider that the correlation of the model 
was very positive, showing the efficiency of the model.

3.4. Interpolation performance

In order to test the precision of the ANN model pre-
viously developed and optimized, an interpolation was 
performed. For this purpose, a database was constructed 
in 2019 containing a set of data points located at the 
experimental points. The results showing the regression 
curve between the predicted and experimental values and 
the performance of the interpolation in terms of error and 
correlation coefficient are shown in Fig. 7.

These results show a good correlation between the pre-
dicted ANN and the experimental values with a very high 
correlation coefficient (Fig. 7) (R = 0.99918) and with a mini-
mum squared error (RMSE = 9.3595 mg/L) and absolute error 
(MAE = 6.7598 mg/L) (Table 5). This result confirms again 
model efficiency using new data in the prediction range.

Results of interpolation performances in terms of 
all errors and in terms of the agreement vector values 
[R (correlation coefficient), α = (slope), and β (y-intercept)] 
are summarized in Table 5.

3.5. Extrapolation performance

Prediction was also performed to test the accuracy of 
the ANN developed. The idea was to test experimental data 
of the soluble sulfate content, which were not used during 
the training of our network; this database was built in 2019. 
The results in Fig. 8 show a very high coefficient (R = 0.9989), 
as well as very low values in terms of mean squared error 
(RMSE = 12.2587 mg/L) and MAE (MAE = 10.9054 mg/L) 
(Table 6). Extrapolation of a database was also achieved to 
check the accuracy of our optimized ANN model. The idea 
was testing experimental data sets never exploited during 
the learning and the test phases. The experimental data 
set of this system exploited in our principal database was 
obtained by analysis of water samples collected during sev-
eral campaigns carried out in the Médéa region. Results 
of extrapolation performances in terms of all error and in 
terms of the agreement vector values [R (correlation coef-
ficient), α = (slope), and β (y-intercept)] are summarized 
in Table 6. The quality of fit of the extrapolation data set 
is depicted in Fig. 8. The results showed a good agreement 
vector (R, α, and β) between experimental data and the ANN 
predicted results with accepted RMSE. It can be observed 
that for our extrapolation case, the results showed a good 
predictive ability of the ANN in both developed and opti-
mized model. This shows a good convergence between the 
experimental output and the output predicted by the ANN.

3.6. Comparison of MLR and ANN for predicting 
soluble sulfate concentrations

In order to evaluate the two developed predictors, all 
data for MLR and ANN were compared (Table 7). The results 
depicted in Table 7 show the comparison of correlation 
coefficients and statistical indicators obtained by the two 
models. The correlation coefficient calculated by the ANN 
was significantly higher with (R = 0.99973) while that given 
by the MLR was less low (R = 0.941). In addition, the RMSE 
and MAE given by the ANN model (RMSE = 88.3068 mg/L 
and MAE = 42.3274 mg/L) were very low compared to that of 
the MLR model (RMSE = 5.9755 mg/L), (MAE = 3.1767 mg/L).

Fig. 9 confirms again the superiority of the ANN model 
if compared to the MLR model with a very good superpo-
sition of the curves measured experimentally and those 
estimated by the ANN model.
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Fig. 4. Evolution of the MSE corresponding to the three learning 
phases.

Table 4
Performances of the prediction using ANN

RMSE (mg/L) MAE (mg/L) R α β

All 5.9755 3.1767 0.99973 1.0005 –0.1145
Training 6.5382 4.2437 0.99963 1.0018 –0.3500
Test 5.4650 3.5362 0.9998 0.9969 1.4545
Validation 3.1826 1.9667 0.9999 1.0024 –2.1524
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The results obtained show a very good agreement for 
the ANN model, explained by a high correlation coeffi-
cient and small statistical indicators errors for the learning 
phase, the test phase, and the validation phase.

3.7. Residues study

The error made by the models established for each 
method on an individual of the model’s construction sam-
ple is called residual [61]. Thus, the study of the relation-
ship between the estimated levels of the soluble sulfate 
content by the mathematical models and their residuals 
(yexp – ypred) makes it possible to ensure the performance of 
the model and to verify empirically inter them, the validity 
of the hypotheses of the models.

The analytical methods to analyze the residues are 
mainly graphical analysis methods. Fig. 10 shows the 
residuals related to the model established by ANNs and 
those related to the model established by MLR based on 
the estimated values.

This figure shows that the residues obtained by the neu-
ral network method were less dispersed (close to zero) if 
compared to those obtained from the MLR.

In general, the results obtained were very satisfac-
tory and justify the use of the neural network approach 
in the prediction of the soluble sulfate content levels 
of the Médéa region. It is consistent with the results of 
some recent studies that showed that MLR models per-
form poorly compared to those established by ANN  
models [48,54,62].
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Fig. 5. Comparison between normalized experimental and calculated values for the ANN model.
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4. Conclusion

This document highlighted the importance of drinking 
water quality modeling based on the soluble sulfate con-
tent in the drinking water parameter. In this study, in the 
first stage, samples were collected at different points in the 
Medea region, Algeria. This was followed by a second stage, 
which was devoted to the analysis of these samples in the 

laboratory in order to have the physico-chemical param-
eters (sulfate, conductivity, turbidity, potential hydrogen, 
hardness, calcium, magnesium, chlorides, TAC, material 
organic, nitrogen dioxide, nitrates, sodium, bicarbonate, 
potassium, heavy metals (Mn2+, Fe3+, and Al+), and dry res-
idues). Then the database was constructed; statistical anal-
ysis was applied on physico-chemical parameters for the 
prediction of soluble sulfate content in drinking water in 
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Fig. 6. Comparison between experimental and calculated values obtained by the ANN model to assess prediction performances.

Table 5
Performances of the interpolation

RMSE (mg/L) MAE (mg/L) R α β

9.3595 6.7598 0.99918 1.001 –7.027

Table 6
Performances of the extrapolation

RMSE (mg/L) MAE (mg/L) R α β

12.2587 10.9054 0.9989 1.0022 –4.6989
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Table 7
Performance comparison between MLR and ANN prediction models

Model RMSE (mg/L) MAE (mg/L) R α β R2
adj

ANN 5.9755 3.1767 0.99973 1.0005 –0.1145 0.9996
MLR 88.3068 42.3274 0.941 0.8859 46.480 0.924
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Fig. 7. Comparison between experimental and calculated 
values obtained by the ANN model to assess interpolation 
performances.
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Fig. 8. Obtained by the ANN model to assess extrapolation 
performances.
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Fig. 9. Continued
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Fig. 9. Relationship between experimental data and the predicted data of samples using multiple linear regression and artificial neural 
network modeling: (1) training, (2) test, (3) validation, and (4) all data.
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the Medea region using two modeling methods: MLR and 
neural networks for prediction of the soluble sulfate con-
tent in drinking water in order to compare between them. 
In addition, the RMSE and the MAE were used to evaluate 
the effectiveness of these two models.

The results showed that the predictive model based on 
ANNs of configuration [18–8–1] with hyperbolic tangent 
transfer functions in the hidden layer and in the output 
layer and the Levenberg-type learning algorithm Marquardt 
were better than those established by MLR. Indeed, the 
correlation coefficient of the ANN model was very high 
(R = 0. 99973) compared to the MLR model. Also, the RMSE, 
the RMSE, and the MAE of the ANN model were less than 
those established by MLR, 5.9755 and 88.3068 mg/L for 
RMSE, 35.7067 and 7,798.0935 mg/L for MSE, and 3.1767 
and 42.3274 mg/L for MAE, respectively.

ANN model was re-tested considering two databases 
for interpolation and extrapolation to evaluate its effi-
ciency. The results of the interpolation and extrapolation 
showed high efficiency, owing to their very high correla-
tion coefficient and low values of the RMSE, the MSE, and 
the MAE. Consequently, the effectiveness of our model 
is confirmed. The results for interpolation and extrapola-
tion were as follows: correlation coefficient R = 0.0.99918 

and 0.9989, the RMSE (RMSE = 9.3595 and 12.2587 mg/L), 
the MSE (MSE = 87.6019 and 150.2771 mg/L), and the 
MAE (MAE = 6.7598 and 10.9054 mg/L), respectively.

This performance seems to be due to the fact that the 
soluble sulfate content was linked to the physico-chemical 
characteristics of the environment with non-linear relation-
ships. In addition, the residue graphs showed the power of 
neural networks in the modeling of the data.
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