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a b s t r a c t
Most applied optimization problems involve several objectives, which must be solved simultane-
ously within a set of constraints. When conflicting objectives exist, there is no single solution to 
be chosen as the best one, but a set of optimal solutions to the problem. When the decision vari-
ables are discrete, the complexity of the problem increases even further. In the present work, a 
multi-objective model is presented to solve the problem of water distribution network optimiza-
tion with discrete variables. The problem has a mixed discrete nonlinear programming formulation. 
A new algorithm based on particle swarm optimization is proposed in order to solve the model. 
Hydraulic simulator EPANET v2.1 is used to calculate the pressure at each node and flow veloc-
ity of water in each pipe. Two problems from the literature are studied, having as objectives the 
minimization of pipeline installation costs and the minimization of pumping energy costs for the 
system. Through the weighted sum method, the problems of WDN were solved. The proposed 
algorithm is verified to be efficient, with equal or better results than those found in the literature.

Keywords:  Mixed discrete nonlinear programming; Multi-objective optimization; Water distribution 
networks; Particle swarm optimization; EPANET

1. Introduction

In practice, there are factors that influence decision 
making when setting up a water distribution network 
(WDN), which may be technical, economic, political, etc. 
When these different objectives are conflicting, the final 
result is not, necessarily, the best one. For most WDN, the 
global cost comprises the costs of pipeline installation and 
of the pumping system, pumping energy, and infrastruc-
ture work. The infrastructure work (water intake struc-
ture, water treatment plant, raw water pumping system, 
etc.) are defined in advance. The pipeline installing cost 

and the pumping energy cost are variables to be optimized 
within the particular constraints of the network.

Problems that present a set of objectives to be min-
imized (or maximized) within a set of constraints are 
named multi-objective optimization problems (MOOP). 
These objectives are usually conflicting, that is, a function 
cannot have its value improved without worsening the 
value of another function. Therefore, there is a set of solu-
tions, which have advantages in certain objectives but are 
worse in others [1].

In the present work, a problem with a multi-objective 
formulation is used in WDN dimensioning, involving two 
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conflicting functions: the minimization of fixed costs CP 
(pipeline installation costs) and the minimization of opera-
tional costs CE (pumping energy costs).

The reduction of the pipes diameters results in greater 
energy consumption. One of the challenges in WDN design 
is the optimization of operational efficiency, which includes 
the pumping system, the volumes of variable-level reser-
voirs, the pipe diameters, etc. Operational sustainability is a 
rising issue [2].

WDNs should be designed in an efficient manner to 
ensure water supply with adequate flow rates and pres-
sures, avoiding excessive installation and operational net-
work costs. The optimization of a WDN comprises searching 
for the best combination of pipe diameters that results in a 
minimal installation cost while meeting specific constraints, 
such as minimum pressures in consumption nodes or 
minimum and maximum velocities of the fluid in the pipes.

In the steady-state operation, the algebraic sum of the 
flow rates in each node must equal zero and the algebraic 
sum of the head losses (starting from and arriving at the same 
node) in a closed circuit inside the system (loops) must equal 
zero.

According to Wu and Simpson [3], traditional optimi-
zation methods, including linear, nonlinear, and dynamic 

programming, have provided efficient computational 
methods to achieve a lower-cost solution. They present, 
however, some disadvantages, such as: inefficiency in 
the search for a global optimum due to the zero-gradient 
optimality criterion, lack of flexibility at handling discrete 
variables, and complexity of implementation in practical 
engineering designs.

Therefore, the search is also carried out outside the 
neighborhood, thus increasing the chances of finding a 
global optimal solution. Some heuristic methods with 
applications in WDN optimization stand out, as shown in 
Table 1.

Stochastic methods use only information on the func-
tion to be optimized, which can be nonlinear, nondifferen-
tiable, and multimodal. These methods search for the opti-
mal solution using probability rules, generating possible 
solution candidates according to a certain pattern.

The particle swarm optimization (PSO) algorithm is a 
simple and efficient technique that can be naturally extended 
in order to deal with multi-objective optimization problems 
(MOOP). Kumar and Minz [27] proposed a solution named 
multi-objective particle swarm optimization (MOPSO), 
where the PSO can be modified in two ways: first, each objec-
tive function is treated separately, and second, all objective 

Table 1
Some heuristic methods applied in WDN optimization

Solving algorithm Year Researchers WDN

ACO – Ant Colony Optimizations 2003 Maier et al. [4] Two Reservoirs and NYC water Supply System
GA – Genetics Algorithms 1987 Goldberg and Kuo [5] Serial Liquid Pipeline

1993 Simpson and Murphy [6] Two Reservoirs
1997 Savic and Walters [7] Two Loop, Hanoi and NYC water Supply System
2015 Bi et al. [8] Hanoi, Extended Hanoi, Fosspoly1, ZJ, Balerma, 

Rural Network, Klmod Network
HBMO – Honey Bee Mating 

Optimization
2008 Jahanshahi and Haddad [9] Nyc Water Supply System
2010 Mohan and Babu [10] Two Loop and Hanoi

HS – Harmony Search 2002 Geem et al. [11] Two Loop
ILS – Iterated Local Search 2016 De Corte and Sörensen [12] Two Loop, Hanoi and HydroGen
PSO – Particle Swarm Optimization 2006 Suribabu and Neelakantan [13] Two Loop and Hanoi

2008 Montalvo et al. [14] Hanoi and NYC Water Supply System
2014 Ezzeldin et al. [15] Two Loop and Two-Source
2017 Surco et al. [16] Two Loop, Hanoi, R-9, Balerma
2018 Surco et al. [17] Two Reservoirs, NYC Water Supply System, 

Network 1, Esperança Nova
SA – Simulated Annealing 1995 Loganathan et al. [18] Two Loop and NYC water Supply System

1999 Cunha and Sousa [19] Two Loop and Hanoi
SCE – Shuffled Complex Evolution 2004 Liong and Atiquzzaman [20] Two Loop and Hanoi
SFLA – Shuffled Frog Leaping 

Algorithm
2003 Eusuff and Lansey [21] Two Loop, Hanoi, NYC water Supply System

STA – State Transition Algorithm 2016 Zhou et al. [22] Two Loop, Hanoi, NYC water Supply System
TS – Tabu Search 1999 Fanni et al. [23] Two Reservoirs and Extended Two Reservoirs 

Network
2004 Cunha and Ribeiro [24] Two Loop, Hanoi, NYC water Supply System

WCA – Water Cycle Algorithm 2014 Sadollah et al. [25] Balerma
Multi-Swarm Optimizer 2019 Surco et al. [26] Two-Source, Esperança Nova
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functions are evaluated for each particle. A nondominated 
solution (best position) is chosen as the leader of the group.

Siew et al. [28] presented an algorithm named Penalty-
Free Multi-Objective Evolutionary Algorithm (PF-MOEA), 
based on Nondominated Sorting Genetic Algorithm (NSGA 
II) to solve a network with multiple pumps and vari-
able-level reservoirs.

Zheng and Zecchin [29] developed an algorithm named 
decomposition and Decomposition and Dual-Stage Multi-
Objective Optimization (DDMO) to minimize installa-
tion costs for network pipes and to maximize network 
reliability, described by Farmani et al. [30].

In the present work, an optimization model was devel-
oped for WDN design, considering two conflicting objec-
tives: the minimization of pipeline installation costs and the 
minimization of pumping energy costs. An algorithm based 
on PSO was developed to solve the problem. The hydraulic 
variables were calculated using EPANET, which is a pub-
lic domain hydraulic analysis package for water supply 
networks and was developed by the U.S. Environmental 
Protection Agency in 1993. In July 2016, it was provided 
the toolkit for EPANET version 2.1, which is used in 
the present work.

2. Multi-objective function optimization

MOOPs may be defined as follows: a set of objective 
functions to be optimized, subject to a set of constraints, 
as shown in Eq. (1), where x = [x1,x2,…,xn4

]T is the vec-
tor of n4 decision variables, also known as the solution  
vector:
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L

4
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U

4

( ), 
which represent the lower and the upper limits of the vari-
able xi4. The n2 inequalities defined by g xi2

( )  and the n3 equal-
ities defined by h xi3 ( )  are the constraints of the model.

The vector comprising the n1 objective functions, 
f x f x f x f xn( ) = ( ) ( ) … ( )



1 2 1

, , , , forms a multidimensional 
space named (objective space). Functions f xi1 ( )  are conflicting. 

For a single-objective optimization problem, f x n( ) →:R R4 , 
while for a multi-objective one, f x n n( ) →:R R4 1 .

2.1. MOOP solution methods

All Pareto-optimal solutions are, in principle, equally 
important. According to Deb [1], there are two goals in 
multi-objective optimization:

•	 Finding a set of solutions as close as possible to the 
Pareto-optimal front;

•	 Finding a set of solutions with the greatest possible 
diversity.

The first goal is common in optimization works. 
The second one however has to be carried out including 
the whole Pareto-optimal front. With a diversified set of 
solutions, comes a good set of options among objectives. 
The aforementioned goals should be met with utmost 
computational efficiency.

Two different approaches may be taken when optimiz-
ing multi-objective functions: multiple criteria decision 
making (MCDM) and evolutionary multi-objective optimi-
zation (EMO). These approaches solve the same problem 
using different focuses [31]. MCDM aims to support the 
decision maker in identifying the preferred solution, with 
the ability to choose said preference before, during, or after 
the search for the ideal solution. In this method, a MOOP 
can be converted, via some techniques, into a single-objec-
tive optimization problem. On the other hand, the EMO 
method is based on an evolutionary algorithm that tries 
to find a set of nonconditioned solutions near the Pareto-
optimal front.

There are some classic methods for the solution of 
MOOPs:

•	 Weighted sum method
•	 e-constraint method
•	 Goal-programming method

Due to the results required in the present work, the 
weighted sum method will be focused on. Its formulation is 
presented by Eq. (2), where w w i ni i1 1

0 1 1> ∀ = …( ), , ,  are the 
weight of each objective function; Weight vector W is given 
by W w w wn= …( )1 2 1

, ,, . Usually, weights that suit equation 

i

n
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1

1

1
1∑ =  can be chosen. F(x) is the global objective function 

(GOF):
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The advantages of this method are its simplicity and 
ease of use. Furthermore, in situations of convex problems, 
solutions in the Pareto-optimal set are guaranteed to be 
found.

3. Optimization of WDNs with pumping in 
the network head

If a network presents M pipes and K nodes, its optimi-
zation consists in finding the diameters of the pipes that 
compose the network with minimal cost. In the context of 
WDN design, there is a finite set of available diameters for 
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a given network, which will be named DSET = {D1,D2,…,Dnd}, 
and their respective costs, Cost = {Cost1,Cost2,…,Costnd}, 
so that:

D1 < D2 < … < Dnd, where D1 = Dmin and Dnd = Dmax

3.1. Objective function for pipe installation costs

The objective function can be formulated as shown in 
Eq. (3), where CP is the objective function to minimize the 
total pipe installation costs, Lj is the length of pipe j, and 
Cost(Dj) is the installation cost per unit length for the pipe 
with diameter Dj. Dj is the decision variable, j = 1,…,M:

Min CostC L DP
j

M

j j= ⋅ ( )
=
∑

1

 (3)

3.2. Objective function for pumping energy costs

The objective function to minimize operational 
expenses of the pumping station (CE) can be expressed as 
shown in Eq. (4), where Eh represents the updated cost 
of water pressurization per meter of elevation, provided 
by Eq. (5), and H is a decision variable representing the 
pumping head (m):

MinC E HE h= ⋅  (4)
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In the aforementioned equations, Eh is in $/m, QT is 
the total flow rate of the system (m3/s), EC is the electri-
cal	 energy	cost	per	kWh,	η	 is	 the	efficiency	of	 the	pump-	
motor unit, Nhy is the number of pumping hours per year, 
n is the lifespan of the installation in years, PWF is the 
present worth factor used in engineering economic for 
geometric gradient series [32], shown in Eq. (6), for this 
model e1 is the annual interest or discount rate and e2 is the 
annual rate of increase in the unit energy cost:
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The PWF for a projection of n years also named pres-
ent value factor, converts a series of annual costs into a 
present value, subject to an interest rate e1 and to a rate of 
increase in the unit energy cost e2.

3.3. Constraints and limitations

•	 Law of conservation of mass

q k d k k K( ) = ( ) = … ( )∑ , , ,1 nodes  (7)

This equation shows that the net flow rate in each 
node must equal to demand d at node k.

•	 Law of conservation of energy

h j jf ( ) = ∈∑ Ep, loop set  (8)

The sum of head losses hf in the pipes (starting and end-
ing at the same node) must equal to the energy delivered 
by a pump belonging to the loop.

•	 Diameters are discrete, real variables

Diameter Dj must belong to the set of available 
diameters for the network, DSET:

D D D D Dj ∈ = …{ }SET nd1 2, , ,  (9)

•	 Minimum pressure requirements in the nodes

The pressure in demand node k must be greater than 
the minimum requirement for the said node (∀k = 1,...,K):

pr prk k( ) ≥ ( )min  (10)

•	 Minimum and maximum velocities of the fluid in the 
pipes

Water velocity in pipe j (vj) must be between the limits 
showed in Eq. (11):

v v vjmin max<− <−  (11)

•	 Minimum and maximum reservoir elevations

The minimum reservoir elevation must be enough for 
the water supply by gravity to be viable and the maximum 
elevation must be defined for each case study:

H H Hmin max<− <−  (12)

The head loss, hf, is calculated, in the interna-
tional system of units (SI), using the Hazen–Williams 
Eq. (13), where Cj is the Hazen–Williams roughness coef-
ficient (dimensionless), qj is the flow rate (m³/s), Dj is the 
diameter (m), and Lj is the length (m) for pipe j:

h j
q L

C Df
j j

j j

( ) =
10 674 1 852

1 852 4 871

. .

. .  (13)

3.4. PSO algorithm with continuous variables for the 
minimization of pumping energy costs

The PSO algorithm initialization for variable H is as 
follows:

•	 Particle velocity of variable H may be initialized at zero 
(vH = 0) or randomly between limits VHmin and VHmax.
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•	 Eq. (14) is used to start the Hi particles, i = 1,2,…,N, 
where r is a uniformly distributed random number in 
the interval [0, 1].

H H r H Hi = + ⋅ −( )min max min  (14)

•	 Eq. (15) is used to update vH, where wPSO is the iner-
tia weight, c1 and c2 are, respectively, the cognitive 
and social acceleration coefficients, and r1 and r2 are 
uniformly distributed random numbers in the inter-
val [0,1]. The values of variables pH1

 and gH must be 
known beforehand for Eq. (15) to be used:

v t v t w c r p H c r g HH H H i H ii i i
+( ) = ( ) ⋅ + ⋅ −( ) + ⋅ −( )1 1 1 2 2PSO  (15)

Some researchers recommend the inertia weight, wPSO, 
to be dynamic, that is, decreasing as a function of iterations. 
Several formulations for wPSO as a function of iterations t are 
present in the literature [33].

•	 The velocity of variable H in the PSO algorithm must be 
limited by defined values of VHmin and VHmax:

V v VH H Himin max<− <−  (16)

•	 The new position of particle i in iteration t + 1 is given by:

H t H t v ti i H i
+( ) = ( ) + +( )1 1  (17)

If the network pump belongs to a set of available pumps 
it is necessary to convert the continuous variable H into 
a discrete one. The pump heads are based on the specific 
curves for each pump:

H Q a Q b Q cnP nP nP nP( ) = ⋅ + ⋅ +2  (18)

The coefficients a, b, and c are presented in Table 2.
H1 is fixed as the Hmin and HnPT is fixed as the Hmax. 

Hi belongs to the set {H1,H2,…,HnPT}. Fig. 1 illustrates 
the discretization procedure [16].

According to Fig. 1, variable Hi will assume the value 
of either HL or HU:
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This involves cost differences in the construction and 
installation of the reservoirs. It is not being considered in 
the optimization, which is a limitation of the work.

3.5. Discrete-variable PSO algorithm for the minimization of 
pipeline installation costs

Particles are initialized randomly, with continuous values 
between limits Dmin and Dmax, according to Eq. (20), where r is 
a uniformly distributed random number in the interval [0,1].

x D r D Di j, min max min= + ⋅ −( )  (20)

The response of Eq. (20), xi,j (diameter of pipe j belong-
ing to particle i), is a continuous number and must be dis-
cretized, as shown in the approach of Fig. 1 and Eq. (19). 
Therefore, xi,j ∈ {D1,D2,…,Dnd}.

Iteration velocity, vPi,j, is a continuous value. It is ini-
tialized at zero or randomly between –VPSOmin and VPSOmax. 
The new position of particle xi,j in iteration t + 1 is given by 
Eq. (21), whose result is continuous and must be discret-
ized again, according to Fig. 1 and Eq. (19). Particle velocity 
vPi,j is given by Eq. (22):

x t x t v ti j i j Pi j, , ,+( ) = ( ) + +( )1 1  (21)

v t v t w c r p x c r g xPi j Pi j i j i j j i j, , , , ,+( ) = ( ) ⋅ + ⋅ −( ) + ⋅ −( )1 1 1 2 2PSO  (22)

Iteration velocity values can be controlled by imposing 
limits, shown in Eq. (23), and VPSOmax itself can be limited 
by	Eq.	(24),	where	δ	∈ (0,1].

− ≤ ≤V v VPi jPSOmax PSOmax,
 (23)

V D DPSOmax máx mín= ⋅ −( )δ  (24)

These limits must be tested for an efficient convergence 
in the search for an optimal solution.

In the case of single-objective optimization problems 
concerning WDN design, the particle is a vector with 
dimension M, which corresponds to the diameters of the 
M pipes, considered to be a possible solution for the net-
work, given by vector Xi =  (xi,1,…,xi,j,…,xi,M) where xi,j is 
the diameter of pipe j belonging to particle i. Vector Xi is 
named the current position of particle i. Analogously, 
there are the velocity vector (Vi) and the best position vec-
tor (Pi) for particle i, which have the following formats: 
Vi = (vPi,1,…,vPi,j,…,vPi,M) and Pi = (pi,1,…,pi,j,…,pi,M). The vector 
of the best position reached by particle i is named local best 
and vector G = (g1,…,gj,…, gM) is the leader particle, which 
has the best evaluation in iteration t, named global best.

4. Developed algorithm

For an optimization problem with two objective func-
tions, there are M variables relative to the pipes of the WDN 
and one variable relative to the pumping system, totaling 
M + 1 decision variables.

Table 2
Pump curves coefficients

Pump number a b c Pump heads (m)
nP = 1 a1 b1 c1 H1

nP = 2 a1 b1 c1 H2 ...  ...  ...  ... ...

nP = nPT anPT bnPT CnPT HnPT
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Particle i is a vector of dimension M + 1 and has the 
following format:

•	 Xi = (xi,1, xi,2,…, xi,M, Hi,M+1) named position vector;

•	 V v v v vi Pi Pi j Pi M Hi M
= … …( )

+, , ,, , , , ,
,1 1

, named velocity vector;

•	 P p p p pi i i i M Hi M
= …( )

+, , ,, , , ,
,1 2 1

 is the vector of the best 

position achieved by particle i, named local best; 
•	 G = (g1,g2,…,gM,Hg) is the vector of the leader particle in 

iteration t, which has the best bi-objective evaluation, 
named global best.

At a given iteration t, the position of the N particles 
from the group forms matrix X of order N × (M + 1), as 
shown in Eq. (25). Each particle i from the group moves in 
the decision space with a certain speed, Vi, in search of a new 
position. Eq. (26) represents matrix V of order N × (M + 1). 
For each movement (iteration) of a particle, its position is 
updated and evaluated according to the global objective 
function (GOF), shown in Eq. (27), where Lj is the length of 
pipe j, Cost(xi,j) is the cost of pipe j with diameter xi,j, Eh is a con-
stant calculated by Eq. (5) and Hi is the elevation for particle i:
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C w L x w E HTGi
j

M

j i j h i= ⋅ ⋅ ( ) + ⋅ ⋅
=
∑

1
1 2Cost ,  (27)

Eq. (28) shows the global objective function with the 
combination of weights and the penalization. Penalization 
happens when the particle (vector Xi) violates the hydrau-
lic constraints of pressure or velocity. The developed 
algorithm, through variable NVi, counts the number of 
nonviable nodes (node pressure lower than prmin) and the 
number of nonviable pipes (velocity in the pipe outside the 
limits of vmin or vmax) for particle i, which is then penalized 

with a value, Wpenal, for each violation of the hydraulic 
constraints. If there are NVi violations, the total penaliza-
tion will be Wpenal × NVi. This penalization is then added 
to the value of the global objective.

This function in this process, hydraulic simulator 
EPANET, is used for the evaluation of node pressures and 
velocities in the pipes for particle i. This penalized global 
objective function will be used in the optimization process:

C w L x w E H W NVi
j

M

j i j h i iTGP penalCost= ⋅ ⋅ ( ) + ⋅ ⋅ + ⋅
=
∑

1
1 2,  (28)

Each favorable position (minimal Fi) of particle Xi is 
named local best evaluation. The position is stored in vec-
tor Pi. Matrix P of order N × (M + 1), shown in Eq. (29), is 
formed by the vectors Pi. The value of the penalized global 
objective function of each particle Pi is stored in column 
vector FL, shown in Eq. (30), being simultaneously updated 
with matrix P:
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The vector whose elements equal Dmax is named 
Gmax = (Dmax,Dmax,…,Dmax). If particle Gmax is viable, that is, 
pr(k)	≥	prmin(k) for each node k, the WDN problem is an opti-
mization problem with a single objective, which means the 
feeding source is sufficiently high to supply every node in 
the system by gravity. If solution Gmax shows pressures in 
demand nodes lower than the required minimum, the water 
has to be pumped to a greater elevation. Therefore, the 
vector becomes Gmax = (Dmax,…Dmax,Hmax) and the correspond-
ing value of the global objective function is given by CTGmax.

For each new position (iteration), the best position 
of P is also evaluated, generating vector G (global best), 
G = (g1, g2,…,gM, Hg) whose evaluation with the global objec-
tive function, shown in Eq. (28), is a scalar named global 
total cost, CTGG, which is, for now, the best result found in 
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the optimization process. The movement of the particles 
(iterations) ends when CTGG shows no variation in the results 
obtained in subsequent iterations or when the iteration limit, 
tmax, is reached.

For each particle i = 1,…,N, the algorithm initializes vec-
tors Pi = (Dmax,…,Dmax,Hmin), Vi = (0,…,0,0), and FPi = CTGmax. 
Vector global best is initialized as G = (Dmin,Dmin,…,Dmin, 
Hmax) and its corresponding value of the global objec-
tive function is CTGmax, which corresponds to a reference 
value in the search for the minimal values of the global 
objective function. The results to be presented are: G = (g1, 
g2,…,gM,Hg), the global total cost (CTGG), the pressure (pR) 
for each node, and the velocity (vR) for each of the M pipes.

The algorithm, which is described below, works with a 
certain number of attempts (Att_max). Each attempt yields 
a viable minimal solution to the global function, accord-
ing to the maximum number of iterations (tmax). After 
carrying out the Att_max attempts, the algorithm will 
select the best result, showing the values of the decision 
variables as well as those of the hydraulic variables.

Algorithm description:

•	 Initialize Xi, Vi, Pi, ∀ i ∈ {1,…,N}: xi,j according to 
Eqs. (14) and (20) for j = M + 1. The particle starts at 
rest, that is, vPi,j = 0. Vector Pi is given by Pi = (Dmax,…, 
Dmax,Hmin) and its respective initial performance is 
FPi = CTGmax. Vector G is given by G = (Dmin,Dmin,…, 
Dmin,Hmax) and its respective performance is CTGG = CTGmax.

•	 For each particle i (i = 1,…,N):
 � Calculate the pressures and the velocities using the 

hydraulic simulator EPANET, then calculate the num-
ber of violations (NVi) and the value of the penalized 
global objective function, CTGPi, according to Eq. (28).

 � Compare performance CTGPi with performance FPi of 
vector Pi. If it is better, update the performance of vec-
tor Pi (FPi ← CTGPi) as well as its components (Pi ← Xi).

 � Compare performance CTGPi with performance 
CTGG of vector Gbest. If it is better and no constraints 
are violated (NVi = 0), update the performance 
of Gbest (CTGG ← CTGPi), the components of vector 
G (G ← Xi), the vector of pressure results, pR, and 
the vector of velocity results, vR.

•	 If the number of iterations is greater than tmax and the 
number of attempts, At, is lower than Att_max, return 
to step 1. Else, end the process and output the results 
(G, CTGG, pR, vR).

Fig. 2 presents the block diagram of the developed 
algorithm.

5. Case studies

Two case studies were considered in order to test the 
applicability of the developed model.

5.1. Grande Setor WDN

Grande Setor WDN corresponds to the water supply 
system belonging to the city of João Pessoa, in the state 
of Paraíba – Brazil. The studied WDN was taken from the 
work by Gomes et al. [34]. The network comprises seven 
nodes (including the reservoir) and eight pipes. All pipes 
and the elevation of the reservoir are to be dimensioned 
with the lowest possible cost, as shown in Fig. 3. The 
minimal pressure imposed on the network is 25 m for 
each node and the maximum and minimum velocities 
allowed in the pipes are 3.0 and 0.2 m/s, respectively.

Network data is shown in Table 3. Water is collected at 
an elevation of 30 m, coinciding with the altimetric eleva-
tion of the terrain.

The materials used for the pipes are rigid PVC and 
ductile iron. Ductile iron pipes can withstand greater pres-
sure than rigid PVC ones. Therefore, pipes with a diame-
ter greater than 350 mm are ductile iron ones. There are 10 
diameters available for use in this network. Table 4 shows the 
properties and the installation costs of the pipes.

Data on pumping energy costs and pumping condi-
tions is presented in Table 5.

The bi-objective optimization function can be written 
as shown in Eq. (31):

F X w L x w H W NVP i
j
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The parameters used for the PSO algorithm were: 
wPSO = 0.9, c1 = c2 = 2, penalty Wpenal = US$ 100,000, population 
N = 30, VPSOmax = 100 mm, VHPSOmax = 0.50 m, Hmax = 14.353 m, 
Hmin = 9.287 m, iteration number tmax = 120. Considering 
every new pipe to have a diameter of 619.6 mm, the max-
imum installation cost, CP, equals US$ 3,793,777.50, and 
the maximum pumping system cost, CE, equals US$ 
640,967.50 (Hmax = 14.353 m), with a global maximum total 
cost, CTGmax, of US$ 4,434,745.00. Table 6 shows the results 
for different combinations of weights. The lowest global 
total cost, CTG, was US$ 2,272,331.75. Elapsed time was 
1.0 s for each combination of weight at an Intel Core i5  
1.6 GHz CPU.

Fig. 1. Discretization of variable Hi.
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Fig. 2. Block diagram of the developed algorithm.

Fig. 3. Grande Setor WDN.



D.F. Surco et al. / Desalination and Water Treatment 218 (2021) 18–3126

If wenergy is greater than wpipe, the minimization of pump-
ing energy costs is preferred and vice-versa. When CE is 
preferred, H is lower than in other results. Table 7 presents 
the results for the pressures in the nodes, as well as the 
diameters and velocities for each pipe for the combination 
of weights (0.5,0.5).

The results were compared with those obtained by 
Gomes et al. [34], according to Table 8. The optimized 
solution with the proposed algorithm is 2.7% better.

Different values of H were selected and the corres-
ponding pipe costs were optimized (Table 9).

5.2. Network 2 with pump-included

Network 2 presented in Fig. 4 was originally presented 
by Costa et al. [35] and studied by Geem [11]. The network 
consists of 11 pipes with nine nodes, all with a length of 
2,500 m, roughness coefficient (Hazen–Williams) = 130. 
The minimum pressure imposed is 30 m for all nodes. 
Table 10 shows the elevation and demand data.

Table 11 shows the ten types of diameters available for 
network 2.

For this network, there are 10 pumps options. The coef-
ficients of the pump curves and the pumping pressure are 
shown in Table 12. The discharge pressure of the pump is 
calculated by Eq. (18).

Pump efficiency is given as a function of Eq. (32):

ηnP nP nPQ Q= − + +695 4 418 3 2 8572. . .  (32)

The discharge flow of the system pump is 1,000 m3/h 
(0.2778 m3/s). Replacing this value in Eq. (32) we have the 
efficiency	ηnp = 65.39%.

Table 3
Nodal and pipe data for the Grande Setor WDN

Node Demand (L/s) Elevation (m) Pipe Length (m)

1 0.00 6.00 1 2,540
2 47.78 5.50 2 1,230
3 80.32 5.50 3 1,430
4 208.6 6.00 4 1,300
5 43.44 4.50 5 1,490
6 40.29 4.00 6 1,210
R 0.00 30.00 7 1,460

8 1,190

Table 5
Pumping costs and conditions for the Grande Setor WDN

Denomination Value

Number of hours per day pumping (NHPD) 20
Number of days per year (NDPY) 365
Total hours of pumping per year Nop = (NHPD)  
 (NDPY)

7,300

Efficiency	of	the	motor-pump	unit	(η) 0.75
Expected period of service for the network in  
 years	(n)

20

Average pumping discharge (QT (m3/s)) 0.4204
Electricity cost (Ec (US$/kWh)) 0.10
Annual rate of increase in electricity cost (e) 6%
Annual discount rate (j) 12%
Present worth factor (PWF) 11.125
Updated cost of water pumping per elevation  
 meter	(Eh (US$/m))

44,657.39

Table 4
Pipe data and costs (US$/m) for the Grande Setor WDN

Internal 
D (mm)

Pipe material Cost 
(US$/m)

Roughness 
coefficient 
C (H–W)

Nominal 
D (mm)

108.4 PVC 23.55 145 100
156.4 PVC 31.90 145 150
204.2 PVC 43.81 145 200
252.0 PVC 59.30 145 250
299.8 PVC 76.12 145 300
366.2 Ductile iron 158.93 130 350
416.4 Ductile iron 187.50 130 400
466.6 Ductile iron 218.12 130 450
518.0 Ductile iron 257.80 130 500
619.6 Ductile iron 320.15 130 600

Source: Gomes et al. [34].

Table 6
Results for different weight vectors

No. Weight vector  
(wpipe, wenergy)

Total cost  
(US$)

Pipes (US$) Energy (US$) H (m)

1 (0.2,0.8) 2,339,255.31 1,866,914.10 472,341.21 10.577
2 (0.3,0.7) 2,321,440.71 1,837,935.15 483,505.56 10.827
3 (0.4,0.6) 2,280,593.35 1,744,302.75 536,290.60 12.009
4 (0.5,0.5) 2,272,331.75 1,662,535.10 609,796.65 13.655
5 (0.6,0.4) 2,273,796.85 1,651,362.15 622,434.70 13.938
6 (0.7,0.3) 2,272,438.92 1,651,388.60 621,050.32 13.907
7 (0.8,0.2) 2,272,814.39 1,651,362.15 621,452.24 13.916
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According to Costa et al. [35], the cost of installing 
the pump for this network is given by Eq. (33).

C C Q HnP nPPM Pump
Rated Rated.= ( ) ( )0 7 0 4. .

 (33)

where Cpump is a constant (700,743 for this study); QnP
Rated(m3/s) 

and Hnp
Rated(m) is the flow and pressure height of the nP 

pump at the point of maximum efficiency.
Table 13 presents the cost of pumping energy and pump-

ing conditions.
Eq. (34) shows the bi-objective function for 

optimization.
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The parameters of the PSO algorithm used were: 
wPSO = 0.9; c1 = c2 = 2; penalty Wpenal = $250,000; population 
N = 35; VPSOmax = 101.6 mm, VHPSOmax = 8.23 m; Hmax = 80.00 m; 
Hmin = 35.78 m; number of iterations tmax = 45. Considering 
all new pipes with the diameter of 762.0 mm, we have 
the cost of implantation CP equal to $9,517,750.00 and 
the maximum cost for the pumping system CE equal to 
US$ 2,617,587.20, with a total maximum cost (CP + CE) 
CTGmax equal to $12,135,337.20. The lowest overall total cost 
CTG found is US$ 4,095,257.79, the pump number 4 being 
the one selected, with discharge pressure of H = 48.48 m. 
For each combination of weights the time was 1.5 s, on a 
computer with an Intel processor Core I5 CPU 1.6 GHZ. 
The results found are shown in Table 14.

The functions CP (pipe installation cost) and CE (pump-
ing energy cost) are conflicting functions; already the 
function CPM (pumping installation cost) is not conflicting 
with the function CE. In this study, the pumping installa-
tion cost can be calculated according to Eq. (33), consider-
ing QnP

Rated = 0.30076 m3/s and HnP
Rated calculated with Eq. (18), 

so the CPM can be calculated directly. Table 15 presents 
the optimized result with costs CP, CE, and CPM.

The results compared with those of Costa et al. [35] and 
Geem [36] are identical, with an optimized global cost of 
$5.505 million. Table 16 presents the optimized diameters 
and the pressures acting on the nodes.

Table 17 shows the optimization of the installation 
costs of pipes and pumping energy cost for each pump.

For the optimization of the network 2, the continuous 
variable H was also considered, the results of which are 

Table 7
Results of optimized diameters and pressures in the nodes for the Grande Sector WDN

Nodal heads Optimal pipe diameters Gomes et al. [34]

Node pr (m) Pipe Diameter (mm) Q (L/s) v (m/s) Pipe Diameter (mm)

1 31.09 1 619.60 420.430 1.39 1 619.60
2 27.24 2 299.80 –80.669 –1.14 2 299.80
3 25.00 3 252.00 32.889 0.66 3 299.80
4 26.22 4 299.80 –47.431 –0.67 4 204.20
5 28.81 5 518.00 291.970 1.39 5 518.00
6 26.03 6 252.00 –47.791 –0.96 6 252.00
R 0 7 108.40 4.351 0.47 7 204.20

8 252.00 –35.939 –0.72 8 156.40

Table 8
Result comparison for the Grande Setor WDN

Work H (m) Total cost (US$) Energy cost (US$) Pipe cost (US$)

This work 13.655 2,272,331.75 609,796.65 1,662,535.10
Gomes et al. [34] 15.790 2,335,649.95 705,244.20 1,630,405.75

Table 9
Optimization of pipe installation costs and pumping energy 
costs for several points of the variable for the Grande Setor WDN

H (m) Total cost (US$) Energy cost (US$) Pipe cost (US$)

8.58 3,514,946.21 383,160.41 3,131,785.80
9.00 3,022,784.21 401,916.51 2,620,867.70
10.00 2,439,508.40 446,573.90 1,992,934.50
11.00 2,329,192.89 491,231.29 1,837,961.60
12.00 2,316,020.68 535,888.68 1,780,132.00
12.50 2,280,356.78 558,217.38 1,722,139.40
13.00 2,285,991.97 580,546.07 1,705,445.90
13.50 2,278,315.97 602,874.77 1,675,441.20
14.00 2,290,880.06 625,203.46 1,665,676.60
14.50 2,287,916.56 647,532.16 1,640,384.40
15.00 2,280,355.85 669,860.85 1,610,495.00
17.00 2,320,320.03 759,175.63 1,561,144.40
20.00 2,401,938.70 893,147.80 1,508,790.90
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presented in Table 18. The ideal (most economical) pumping 
height was 47.872 m.

6. Conclusions

In the present work, an optimization model formulated 
as a bi-objective MDNLP problem was presented. An algo-
rithm based on PSO was developed in order to solve the 
problem. The programmer’s Toolkit of EPANET v2.1 was 
used to calculate the pressures, the velocities, and modify 
pump curve parameters. The model was implemented in 
a case study for WDN from the literature. The bi-objective 
function seeks to minimize pipe installation costs and 
operational costs (relative to energy for the pumping 
system).

The developed algorithm has proven to be reliable and 
efficient in the bi-objective optimization of a WDN, obtain-
ing a lower global value than that presented in the liter-
ature, considering the studied case 1; for case study 2, the 
optimal value found is similar to that presented by other 
researchers. The objective function of the cost of implant-
ing the pump can be calculated directly with the data of 

the pump selected in the bi-objective optimization process. 
The ideal elevation, H, relative to the optimal global value 
that was found, is very close to the global minimum.

Fig. 4. Network 2 structure.

Table 10
Data for nodes for network 2

Node 1 2 3 4 5 6 7 8 9

Demand (m3/h) 0 200 100 100 150 150 100 90 110
Elevation (m) 190 200 190 175 180 180 185 185 190

Table 11
Diameters available for network 2 and their costs

Diameter (mm) 152.4 203.2 254.0 304.8 355.6 406.4 457.2 508.0 609.6 762.0
Cost ($/m) 42.00 58.40 73.80 95.80 118.80 143.00 169.00 197.20 252.60 346.10

Table 12
Pump curve coefficients and discharge pressure

Pump No. a b c Pumping 
pressure (m)

1 0 0 0 0
2 –72.0 –24.0 48.0 35.78
3 –81.0 –27.0 54.0 40.25
4 –125.1 10.9 55.1 48.48
5 –126.0 –9.0 65.0 52.78
6 –89.1 1.2 67.0 60.46
7 –103.7 –7.2 75.0 65.00
8 –129.6 0.0 79.0 69.00
9 –162.0 9.0 85.0 75.00
nPT = 10 –136.7 –3.5 91.5 80.00
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Table 13
Pumping costs and conditions for network 2

Denomination Value

Number of hours per day pumping (NHPD) 24
Number of days per year (NDPY) 365
Total of hours of pumping per year Nop = (NHPD) (NDPY) 8,760
Efficiency	of	the	motor-pump	unit	(η) 0.6539
Expected period of service for the network in years (n) 20
Average pumping discharge (QT (m3/s)) 0.2778
Power electrical tariff (Ec (US$/kWh)) 0.12
Annual rate of increase in the tariff of electrical power (e) 0
Annual discount rate (j) 12%
Present worth factor (PWF) 7.469
Update cost of water pumping per elevation meter (Eh (US$/m)) 32,719.84

Table 14
Optimized results for different weight vectors for network 2

No. Weight vector  
(wpipe, wenergy)

Total cost  
(US$)

Pipe cost  
(US$)

Energy cost  
(US$)

Pump 
No.

1 (0.1,0.9) 4,095,257.79 2,509,000.00 1,586,257.79 4
2 (0.2,0.8) 4,095,257.79 2,509,000.00 1,586,257.79 4
3 (0.3,0.7) 4,114,257.79 2,528,000.00 1,586,257.79 4
4 (0.4,0.6) 4,095,257.79 2,509,000.00 1,586,257.79 4
5 (0.5,0.5) 4,095,257.79 2,509,000.00 1,586,257.79 4
6 (0.6,0.4) 4,144,953.15 2,418,000.00 1,726,953.15 5
7 (0.7,0.3) 4,283,789.60 2,157,000.00 2,126,789.60 7
8 (0.8,0.2) 4,616,587.20 1,999,000.00 2,617,587.20 10
9 (0.9,0.1) 4,616,587.20 1,999,000.00 2,617,587.20 10

Table 15
Optimized costs (CP, CE, and CPM) for network 2

Total ($) Pipe ($) Energy ($) Pump ($) Pump No.

5,505,785.79 2,509,000.00 1,586,257.79 1,410,528.00 4

Table 16
Optimized diameters and pressures acting on nodes

Pipe 1 2 3 4 5 6 7 8 9 10 11
Diameter (mm) 609.6 254 152.4 457.2 152.4 152.4 355.6 254 254 254 152.4
Node 1 2 3 4 5 6 7 8 9
Pressure head (m) 48.48 35.11 35.01 34.17 49.48 42.83 31.55 39.79 30.57
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The selected weight vector affects the results of the 
global objective function, that is, the greater the weight of 
energy (wenergy), the lower the elevation (H) compared with 
the results from other weight vectors. The greater the eleva-
tion, the greater the pumping energy costs. Consequently, 
diameter values are lower, leading to a reduction in pipe 
installation costs.

Symbols

Att_max — Number of attempts
c1, c2 — Cognitive and social acceleration coefficients
CE — Objective function of the energy cost
Cj —  Hazen–Williams roughness coefficient for 

pipe j
CP — Objective function of pipe costs
CPM — Objective function of pump costs
CTGG —  Value of the global objective function for 

particle G
CTGi —  Value of the global objective function for 

particle i
CTGmax — Maximum total cost of the WDN
CTGPi —  Value of the penalized global objective 

function for particle i
Dj — Diameter of pipe j
Dmax — Maximum available diameter for the pipes
Dmin — Minimum available diameter for the pipes
DSET — Set of available diameters for the network
d(k) — Demand at node k
e1 — Annual interest or discount rate
e2 —  Annual rate of increase in the unit cost of 

energy
EC — Electricity cost per kWh
Eh —  Updated cost of water pressurization per ele-

vation meter
EP — Energy delivered by a pump

FPi —  Value of the penalized objective 
function for vector Pi

G — Global best solution vector
Gmax —  Vector where all the pipes have diameter 

Dmax and elevation Hmax
GOF — Global objective function
hf —  Head loss
Hi — Pumping head (m) for solution i
Hmax — Maximum pumping head
Hmin — Minimum pumping head
Nop — Total of hours of pumping per year
i — Particle i
j — Pipe j
k — Node k
K — Number of demand nodes
Lj — Length of pipe j
LP — Linear programming
M — Total number of pipes
MOOP — Multi-objective optimization problem
n — Years of service
nP — Pump number
nd — Total number of available diameters
NLP — Nonlinear programming
N — Total number of particles in the swarm
NV — Number of hydraulic violations
Pi — Vector best position of particle i
pi,j — Component j of vector Pi
pR — Solution vector for pressure heads in solution G
pr(k) — Pressure head on node k
prmin(k) — Minimum pressure head on node k
PSO — Particle swarm optimization
PWF — Present worth factor
q —  Flow rate
QT — Total flow rate of the system (m3/s)
r, r1, r2 —  Random numbers from uniform 

distribution [0,1]
t — Iteration number t
tmax — Maximum number of iterations
VH max —  Maximum velocity of the particle for variable H
VH min —  Minimum velocity of the particle for variable H
vHi — Velocity of variable H of particle i
Vi — Velocity vector of particle i
vi,j —  Water velocity in pipe j belonging to the particle i
vmax, vmin —  Maximum and minimum acceptable water 

velocities
vPi,j — Velocity component j of particle i
VPSOmax — Maximum velocity of the particle
vR — Solution vector for water velocities in solution G
W — Weight vector for the MOOP
WDN — Water distribution network
Wpenal — Penalty value
wPSO — Inertia weight
Xi — Current position vector of particle i
xi,j — Diameter of pipe j belonging to particle i
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