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a b s t r a c t
Regarding water consumption for various usage, water quality management is a significant part 
of water management. Future prediction of water quality parameters is necessary for the plan-
ning of water quality management. Sodium adsorption rate (SAR) is a parameter, which has a sig-
nificant role in irrigation. In the present study, we compared the forecasting of SAR of water in 
Aras, Sepidrud, Karun, and Mond Rivers, Iran, using autoregressive integrated moving average 
(ARIMA) time series and radial basis functions (RBF) neural network. We found ARIMA (0,1,1) 
× (0,1,1)12, ARIMA (0,1,1) (0,1,1)12, ARIMA (0,1,1), and ARIMA (0,1,2) × (1,1,1)12 with minimum 
Akaike’s Information Criterion (AIC) of –1.7127, –1.8177, 2.9317, and 12.44 for SAR prediction of 
Aras, Sepidrud, Karun, and Mond Rivers, respectively. The residual of the mentioned ARIMA 
models was independent (p-value > 0.05). Using RBF neural network for SAR forecasting of Aras, 
Sepidrud, Karun, and Mond Rivers with normalized data, we obtained proper training and testing. 
Mean squared error (MSE are between 0.00026 and 0.0255) and mean bias error (MBE are between 
0.01566 and 0.0612) for training is very low. Likewise, coefficient of determination (R2 are between 
0.907 and 0.960), index of agreement (IA are between 0.981 and 0.999), and the Nash–Sutcliffe effi-
ciency (E are between 0.964 and 0.999) approach to 1, which describes the reliability of the model’s 
performance. Thirty-six months RBF neural network and 12 months of ARIMA time series of SAR 
forecasting for Aras River comparatively match to the measured data and forecast error of both 
RBF and ARIMA were comparable. We compared forecast errors of the ARIMA time series and RBF 
neural network for SAR forecasting of Sepidrud, Karun, and Mond Rivers; the results presented that 
RBF neural network is more reliable than ARIMA for the predicting of SAR.

Keywords:  Sodium adsorption rate forecasting; Autoregressive integrated moving average; 
Radial basis function neural network
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1. Introduction

Predicting water quality in rivers is significant in the 
planning of water quality management. Since for instance, 
any management decision for crop cultivation and planting, 
the future water quality level of the river is necessary. 
One of the important water quality parameters for agri-
cultural purposes is the sodium adsorption rate (SAR). 
Because it affects soil infiltration. Numerous research-
ers have worked to determine the effect of SAR on soil 
infiltration. The rate of infiltration usually reduces with 
either sodium content associated with calcium and mag-
nesium [1]. Shainberg and Letely [2] also stated that rises 
in sodium level will decrease the amount of infiltration. 
Likewise, numerous other studies described that an increase 
of SAR reduced infiltration in the soil [3–5]. Consequently, 
future predicting of SAR is significant.

Mathematical methods have been used often to fore-
cast water quality [6]. Some techniques are available for 
projecting SARs in the water of the river, for instance, the 
Box–Jenkins time series, artificial neural network (ANN), 
and Bayesian time series. Several usages of the first tech-
nique are: Jayawardena and Lai [7] studied the water 
quality of the Pearl River applying the Box–Jenkins time 
series. Sun and Koch [8] employed the Box–Jenkins time 
series, containing autoregressive integrated moving aver-
age (ARIMA) time series, to project the Apalachicola Gulf 
water quality. They determined water level variations in 
tide conditions, inflowing streams water quality, local pre-
cipitation, the velocity of wind, and wastewater discharge 
into the water body was as the influential elements in the 
Gulf water quality. Asadollahfardi [9] used different Box–
Jenkins time series to investigate Tehran’s surface water 
quality, Iran. Kurnc et al. [10] applied Thomas–Fiering 
and ARIMA to forecast water quality and discharge of the 
Yeşilırmak River in Turkey. The mean absolute error and 
root mean square error (RMSE) described that the Thomas–
Fiering model forecasting was more reliable than ARIMA. 
Asadollahfardi et al. [11] investigated upstream and down-
stream of the Latian Dam water quality, Iran, applying 
the ARIMA time series. Abudu et al. [12] used ARIMA, 
transfer function-noise (TFN), and ANNs methods to pre-
dict the monthly TDS of the Rio Grande in El Paso, Texas. 
Ranjbar and Khaledian [13] used the ARIMA method to 
predict water quality parameters of the Sefīd-Rūd River. 
They reported satisfactory outcomes. Arya and Zhang [14] 
applied ARIMA models to predict dissolved oxygen and 
temperature in four water quality monitoring stations at 
Stillaguamish River Washington, US. They showed the 
suitability of the Box–Jenkins time series in the predicting. 
Salmani and Salmani Jajaei [15] studied TDS of Karun River 
in the southeast of Iran using ARIMA, and they also used 
a transfer function model to formulate TDS as a function 
of water flow volume. Some researchers have performed 
using different types of ANNs to forecast SAR in rivers 
such as Asadollahfardi et al. [16], Azad et al. [17], Sattari 
et al. [18], Singh [19], and Al-Obaidi et al. [20]. However, 
they did not compare ARIMA and ANN in predicting SAR.

There are a few studies, which compared the ANN with 
ARIMA. However, they have not related to water quality 
such as Aslanargun et al. [21], that they forecasted tourist 

arrival, Dı´az-Robles et al. [22] projected particulate mat-
ter in urban areas, Yassen [23] predicted economy, Adebiyi 
et al. [24] worked about the stock market, Ighravwea and 
Anyaeche [25] predicted port productivity and berth effec-
tiveness and Li and Li [26] studied the incidence of AIDS.

Only Asadollahfardi et al. [27] used the ARIMA time 
series model and ANN in the framework of a multilayer 
perceptron (MLP) to project the total dissolved solids (TDS) 
in the Zāyandé-Rūd River, Esfahan province, Iran. They 
stated the results of MLP were more reliable than the Box–
Jenkins time series to predict TDS in the river. The difference 
between the present study and the work of Asadollahfardi 
et al. [27] is we applied different ANFIS methods and 
ARIMA time series for four rivers, which cover most of 
the surface water of Iran. The application of the two men-
tioned methods and comparison between them to forecast 
SAR have not been reported in the literature.

Therefore, the first objective of the present study was 
to apply the ARIMA time series and RBF neural network to 
predict the SAR of Aras, SipidRud, Karun, and Mond Rivers. 
Second, we compared the result of the forecasting of the 
two mentioned models to determine the reliability of SAR 
prediction.

1.1. Study area

Fig. 1 presents the places of four rivers and water 
quality monitoring stations. Aras, Sefid-rud, Karun, and 
Mond Rivers are the four rivers, which place in the north, 
northwest, southwest of Iran. A major part of the surface 
water and groundwater of Iran flow in the four rivers. 
The Aras is a river that originates from Turkey and then 
discharges along the boundaries of Turkey, Armenia, the 
Nakhichevan part of Azerbaijan, and Iran and it discharges 
to the Kura River in Azerbaijan. The length of the river is 
1,072 km, covering a basin of 102,000 km2.

Sefid-Rud River is the lengthiest river of northern Iran, 
which its water enters into the Caspian Sea. The Sefid-
Rud River is about 1,000 km long, and its basin covers 
56,200 km2. The mean annual water discharge is 130 m3/s; 
nevertheless, it is subject to substantial fluctuation from 
600 m3/s in the spring during the melting of the snow and 
throughout heavy precipitation. In winter, it decreased 
to 70–80 m3/s. The weather condition is wet and subtropi-
cal. The mean temperature is between 11°C in January and 
26°C in July. Rainfall is around 1,000 mm/y between Elburz 
mountain and the Caspian Sea, and precipitation in the 
southern area is between 200 and 400 mm.

The Karun River is placed in the southwestern of Iran 
with an area of around 67,500 km2. The longitude of the 
basin is 48° to 52° east and the latitude of the basin is 30° 
to 34°15′N. The yearly precipitation is around 550 mm [20]. 
The Mond catchment area is placed between the prov-
inces of Bushehr and Fars in Iran. The catchment area cov-
ers 47,654 km2. The geographical coordination is 54°10′ to 
54°38′E and 27°20′ to 30°05′N. The mean precipitation in 
the catchment area is 350 mm, near 60% of which happen 
in winter. As stated by Ministry of Energy data, the mean 
yearly flow of the river at the outlet of the catchment area 
is 1,720 million m3, of which the Firuzabad River, with an 
average flow of 400 million m3, is the greatest important 
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water supply flow in the basin [28,29]. These four catch-
ment areas could be representing the main area of Iran’s 
surface water supply.

2. Materials and methods

2.1. Box–Jenkins methodology of time series modeling

Decomposition of time series data into its components, 
while being instructive and revealing, needs considerable 
time and effort is a hard job. Besides, it sources more errors 
by the accumulation of component errors [9]. To avoid 
these problems, Box and Jenkins [30] developed a new 
method, which basically, does the same task. It joins all con-
cepts mentioned above. In this technique, we apply some 
transformations such as simple and seasonal differences, the 
trends, and seasonal and cyclical components on existing 
data. Next, a family of models is entertained for the trans-
formed data that is supposed to be as simple as possible.

The Box–Jenkins method is based on the idea of a 
stationary time series shortly described in the next section.

2.2. Classification of time series models

The general seasonal ARIMA model of order (P, Q, D, 
d, p, q) is:
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where ∅ ( )P B , ∅ ( )P
LB , θq(B) and θQ(BL) are the non-sea-

sonal autoregressive operator of order p, seasonal autore-
gressive operators order P, non-seasonal moving average 
operator q, and seasonal moving average operator order 
Q, respectively. The δ is a constant of the model, which 
µ is the real mean of stationary time series. The δ can be 
calculated by Eq. (6):

δ µ= ∅ ( )∅ ( )P P
LB B  (6)

where B is the backward shift operator Bkyt = yt–k, 
∇d equals to the backward difference operator and 
∅∅ ∅ … ∅ ∅ ∅ … ∅ … …1 2 1 2 1 2 1 2, , , , , , , , , , , , , , ,, , , , , ,P L L P L q L L Q Lθ θ θ θ θ θ  
are autoregressive and moving average orders, which 
are unknown that it should be estimated by the sample 
data; αt is a random variable with mean zero and constant 

Fig. 1. Study area of the four rivers, including Aras, Sefid-Rud, Karun, and Mond [29].
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variance. The ats are assumed to be independent and repre-
sent random error or random shocks.

The number of lags for the ARIMA(p,d,q) models is 
determined based on the Akaike information criterion (AIC) 
or the Bayesian information criterion (BIC). First, the inte-
grated parameter d is specified by an adequate number of 
differencing to make the series stationary. Then, the ACF, 

PACF, and EACF plots are utilized to select the appropri-
ate number of lags for the model. In the end, the minimum 
values of AIC and BIC are used to determine the number 
of lags of the model from the list of lag orders suggested 
by ACF, PACF, and EACF plots.

Fig. 2 indicates a flowchart of the description of the 
predictive of ARIMA models.
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Fig. 2. Flowchart of the description of the predictive of ARIMA models.
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For more detail refer to Box and Jenkins [30]. Because 
the objective of the present study was to develop an 
ARIMA time series to predict the future of the SAR of 
the four rivers. Therefore, we applied the AIC to examine 
future prediction instead of the coefficient of determina-
tion (R2), which well fits the past value. AIC is the basic 
formula, which is defined by the following equation:

AIC log likelihood= − − +( )2 2K  (7)

where K is the number of model parameters. Log-likelihood 
is a measure of model fit. The higher the number, the bet-
ter the fit. We used Minitab 19 software version 19.1.1 for 
analysis of the ARIMA time series. We used Mintab19.1.1 
to analyze the ARIMA time series.

2.3. Radial basis function

The radial basis function (RBF (neural network con-
tains a simple architecture. Their structure includes an 
input layer, one hidden layer, and one output layer, which 
at each output node permits a linear combination of the 
outputs of the hidden-layer nodes. Each neuron in the 
hidden layer is made of RBF centered on a point the same 
dimensions as forecaster parameters.

2.4. Selecting input parameters

To choose the input parameters to the RBF, we 
attempted to come after the protocol in the paper of Wu 
et al. [31], which expresses the input parameters should 
be independent and model validation considering rep-
licative and structural validity. Consequently, consider-
ing the accessibility and existing data, we selected six 
parameters as input to RBF neural network, which were 
discharge, pH, Cl, SO4, HCO3, and electrical conductivity 
(EC); and output parameters were SAR.

We selected the number of data required for neural net-
work training from the available data using trial and error 
[32]. Earlier investigators have chosen between 70% and 
80% of the data for the training of the ANN [33–37,17]. 
From 180 monthly available data, we applied 80% for 
training 20% for testing of the network.

2.5. Data preparation

Before using data as input to the RBF neural network, 
data can be scaled between zero and one. We applied 
Eq. (8) to standardize the input data. Lastly, the output data 
was altered to the primary scale for comparison with the 
measured data:

O
O O
O OS

i=
−
−

× −min

max min

2 1  (8)

where OS and Oi are the scaled and the measured amounts of 
the parameters, respectively. Omin and Omax are the minimum 
and maximum amounts of the parameters, respectively.

By applying a Gaussian basis function network in the 
hidden layer (Eq. (9)) of the RBF neural network, the RBF 

simulates the unknown water quality parameter and linear 
activation functions in the output layer:

f x e
x

( ) =
− 2

22σ  (9)

where x is the weighted sum of inputs to the neuron; 
ƃ is the sphere of influence or the basis function width, 
and f(x) = the corresponding output of the neuron [38].

2.6. Training

Training of RBF has two steps. First, the basic func-
tions are established using an algorithm to cluster data in 
the training set. Kohohen self-organizing maps (SOMs) or 
a k-means clustering algorithm is typically used. Kohohen 
SOMs is a method of “self-organizing” RBF neural net-
work, which learns to differentiate patterns within input 
data [39]. Then a SOM will cluster input data based on 
perceived patterns without taking to be accorded a corre-
sponding output response. K describes clustering as com-
prises the organization of all objects into a preset number 
of groups by minimizing the total squared Euclidean dis-
tance for each object regarding its adjacent cluster center. 
Other methods, for instance, orthogonal least squares and 
Maxi Min algorithms were used [40]. Next, the weights 
joining the hidden and the output layer are calculated 
directly using the simple matrix inversion and multi-
plication. The straight computing of weights in an RBF 
makes it far faster to train than an equivalent MLP neural  
network [38].

We trained a large network and after that prune with 
validation [41] applying orthogonal least squares [42,43]. 
Firstly, we performed a growing scheme that iteratively 
adds new hidden nodes to full-trained neural networks. 
After that, a non-heuristic one-pass pruning method 
was carried out, which used orthogonal least squares. 
Derived from pruning, a one-pass method was devel-
oped for generating the validation error vs. network size 
curve. A combined technique was defined in which net-
works were continually pruned during the growing 
process. Consequently, the hidden nodes were ordered 
based on their usefulness, and the least useful nodes were  
eliminated [41].

We selected the Gaussian activation function with vari-
able r (the radius or standard deviation) and C (the cen-
ter or average is taken from the input space) for each RBF 
node in the hidden layer.

For each node in the hidden layer, we obtained the 
parameter of r and c. Then we calculate the Euclidean dis-
tance from the point being evaluated to the center c of each 
neuron. While the RBF center was obtained, we computed 
the width of each RBF unit applying k-nearest neighbors’ 
algorithm. Some K was selected, and for each center, the k 
nearest center was obtained.

The RMSE distance between the current cluster center 
and its k-nearest neighbors was computed.

2.7. Error assessment in training

To control the usability of the RBF neural network, two 
statistical criteria were applied, that is, RMSE and mean 
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bias error (MBE). The MBE indicates if the model forecast-
ing in the training process overestimate (MBE > 0) or under-
estimates (MBE < 0). The best score is MBE = 0. Eqs. (10) 
and (11) present RMSE and MBE [44]:

RMSE = −( )−

=
∑n F M
i

n

i i
1

1

2
 (10)

MBE = −−

=
∑n F M
i

n

i i
1

1

 (11)

where Fi and Mi are the forecasted and the measured 
amount of the parameters respectively, and n is the number 
of data.

2.7.1. Model efficiency

To check the performance of the RBF neural network, 
the coefficient of determination (R2) [45] was computed as 
stated by Eqs. (12) and (13):

R
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where Mi and Fi are the measured and the projected data 
of the parameters, respectively. M and F  equal to the mean 
of measured and the projected data. Likewise, we calcu-
lated the index of agreement (IA) to find how nearby the 
forecasted data was to the observed data [45]:

IA = −
−( )

− + −
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∑1
2

2

F M

F M M M
i

i i
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The index of agreement (IA) varies from 0.0 (theoretical 
minimum) to 1.0 (perfect agreement).

The efficiency E, suggested by Nash and Sutcliffe [46], 
is obtained as one minus the sum of the absolute squared 
differences between the projected data and observed 
data normalized by the variance of the observed amounts 
in the period under study. The variety of E is between 1.0 
(perfect fit) and −∞. Eq. (14) describes E [45]. We applied 
Mathworks Matlab R2020a software for analysis of the 
RBF ANN:
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3. Results

3.1. Aras River

From 180 monthly SAR measurements, we selected 
168 measured SAR for building the ARIMA model and 
12 monthly measured SAR for testing of predicting the 
model. Fig. 2 indicates the results of the trend analysis plot, 

Box–Cox plot, time series plot (difference = 1), and trend 
analysis plot (difference = 1) for SAR of the Aras River.

Since the time-series observations are non-stationary in 
the mean. First, we evaluated the stationary of time series 
related to variance, and draw the Box–Cox plot (Fig. 2). 
According to Fig. 2, the optimal value for the parameter λ 
was equal to one. Therefore, there was no need to convert 
the series to stationary, and the time series is stationary in 
the variance. Thus, using the difference method, we made 
the data stationary on the mean. For this purpose, we con-
verted the time series to stationary by taking a one-time 
difference and draw its diagram (Fig. 2). The time series 
diagram after one-time difference indicates the elimination 
of the nonstationary in the mean; however, for insurance, 
we also draw the series trend Fig. 2. After that, the auto-
correlation function and partial autocorrelation function 
plots for SAR of Aras River were plotted (Fig. 3).

According to Fig. 3, after the series was stationary, 
there was still a seasonal parameter, and for this purpose, 
we eliminated the seasonal parameter by using the dif-
ferences operation and possible models examined on the 
observed data. However, according to Fig. 3, the PACF fig-
ure tends to zero earlier than the ACF diagram, which may 
indicate the absence of AR and SAR factors in the sample.

3.2. Model development

As mentioned previously, the number of SAR monthly 
observations data for the building model was 168, and the 
length of seasonality was 12. Forecasting SAR was per-
formed for12 months. As indicated in Table 1, we examined 
six different models and computed AIC for them.

The residuals examination (modified Portmanteau  
test).

We carried out modified Portmanteau test for ARIMA 
(0,1,1) × (0,1,1)12 model with constant for residuals cor-
relation. According to Table 2, the p-value obtained for 
residual ARIMA (0,1,0) × (0,1,1)12 is less than 0.05, which 
confirms the hypothesis of the residuals dependent.

Despite minimum AIC result, we cannot select ARIMA 
(0,1,0) × (0,1,1)12 model. Therefore, the residuals of ARIMA 
(0,1,1) × (0,1,1)12 with constant was checked. According 
to Table 2, the p-value obtained for residual in all delays 
is more than 0.05, which shows the residual of the model 
is independent.

3.3. Sefid-Rud river

The number of SAR data for the Sefid-Rud river was 
equal to to180. We opted for 168 measured SAR for build-
ing the ARIMA model and 12 monthly measured SAR for 
testing of model forecasting.

Fig. 4 indicates the time series trend of the Sefid-Rud 
River. Due to the declining trend of the main data, the 
time series indicates non-stationary in the mean. To change 
data to stationary, Box–Cox of data was drawn, then a suit-
able value of λ was computed (Fig. 4). According to the 
Cox–Box figure, we achieved λ equal to 0.5 and failure 
to place the insignificant amount 1 in the 95% confidence 
interval. The time series should be changed to stationary 
in the variance proportional to the value obtained for the 
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parameter λ using the transformation √(x_t). Then, it went 
through the next steps of identifying the model.

As shown in Fig. 4, the series is stationary in variance 
after the performance of the Box–Cox transformation, and 
we reached λ equal to 1. We performed one difference in 
the SAR1 time series to reach the stationary time series in 
the mean. As indicated in Fig. 4, finally the time series is 

stationary related to mean and variance. Fig. 5 presents 
the autocorrelation function and partial autocorrelation 
function of SAR2 of the Sefid-Rud River.

Considering Fig. 5, We examined different nonseasonal 
ARIMA time series. However, the residual of the models 
was dependently distributed. Therefore, we selected dif-
ferent types of seasonal ARIMA time series (Table 3), and 

Fig. 2. Trend analysis plot, Box–Cox plot, time series plot (difference = 1) and trend analysis plot for SAR of the Aras river (differ-
ence = 1).

Fig. 3. Autocorrelation function and partial autocorrelation function plots for SAR-Aras river (difference = 1).



E. Rahnama et al. / Desalination and Water Treatment 218 (2021) 193–209200

the residuals are independently distributed. According 
to Table 3, we selected ARIMA (0,1,1) (0,1,1)12 with a 
minimum of ACI of –1.8177 for future predictions.

3.4. Karun River

Fig. 6 indicates the process of converting SAR data 
of the Karun River to be stationary in mean and vari-
ance. Due to the upward trend of the time series of SAR 
on the Karun River (Fig. 6), the series is not stationary in 
mean; therefore, it was necessary to check the stationary 
of variance. The Box–Cox diagram of the time series was 
drawn and obtained a suitable λ (Fig. 6).

As presented in Fig. 6, the optimal value for the param-
eter λ is equal to 0.5. Therefore, it is necessary to convert 
the series using the operator √(x_t). However, considering 
the confidence limit of 0.95% and the value of λ = 1 is also 
in this range, we concluded that no transformation was 
necessary for the stationary of the variance of this series, 
and the time series was stationary in the variance. To reach 
time series to be stationary in mean, the first difference 
was performed. Fig. 6 also indicates the SAR time series of 
Karun River are stationary in mean and variance.

After the time series reached stationary, the ACF and 
PACF diagram was drawn for SAR2 to identify model 
parameters (Fig. 7). As indicated in Fig. 7a a seasonal 
factor was observed.

To determine the dependence of residual, the chi-square 
statistic Box–Pierce (Ljung–Box) test was used. If the p-value 
of the residues is higher than 0.05, it means that the resi-
dues are independent and the model is appropriate. Also, 

if the p-value of the model parameters is less than 0.05; the 
model is not acceptable. First, the non-seasonal ARIMA 
time series model was examined. The p-value was greater 
than 0.05, and the model ARIMA (0,1,1) with AIC of 2.9317 
is acceptable (Table 4).

3.5. Mond River

Fig. 8 indicates the process of converting SAR data 
of the Karun River to be stationary in mean and variance. 
The time series trend diagram describes the non-station-
ary in the mean of the main data. For stationary of SAR 
time series, we checked stationary of time series of vari-
ance and plot Box–Cox series to determine λ. As indicated 
in the Cox–Box transformation λ equal to one. Therefore, 
the time series is stationary of variance. To reach the time 
series to be stationary in mean, the first difference was per-
formed (Fig. 8). Fig. 8 indicates the SAR time series of Mond 
River are stationary in mean and variance.

Fig. 9 presents the autocorrelation and partial auto-
correlation functions of SAR data for Mond River. 
According to Fig. 9, we identify a suitable model.

3.6. Final model

Considering Fig. 9, autocorrelation function, and partial 
autocorrelation function, we applied the different models 
to the SAR data, and the results are indicated in Table 5. 
According to Table 5, ARIMA (0,1,2) (1,1,1)12 was selected 
because of the less value of AIC, and residual of data 
according to Box–Pierce (Ljung–Box) chi-square statistic is 
also independent.

3.7. RBF neural network results

Table 3 presents errors in the training and performance 
of the models for the Aras, Sefid-Rud, Karun, and Mond 
River using RBF. MSE of Karun and Mond Rivers are lower 
than MSE of Aras and Sefid-Rud Rivers. However, the 
rate of MSE is reasonable for the four rivers, which indi-
cates the accuracy of training of the RBF neural network 
for the SAR. MBE describes the adequacy of training of 
the RBF neural network of SAR in the four rivers, which 
are low and is close to zero (Table 6). The results approx-
imately indicate the adequacy of training of the RBF neu-
ral network in the four rivers. R2, IA, and E of Sefid-Rud 
and Karun rivers are higher than Aras and Mond Rivers, 
which presents the better model performance of the first 

Table 1
Comparison of the results of fitting different models to the data

Model AIC Model parameters

ARIMA (2,1,1) × (2,1,2)12 with constant 2.0818 AR (2) is not OK or it is not statistically significant
ARIMA (1,1,1) × (2,1,2)12 with constant 0.2051 SAR (2), SMA (2) are not OK or it is not statistically significant
ARIMA (0,1,1) × (1,1,1)12 with constant –1.7013 SAR (1) is not OK or it is not statistically significant
ARIMA (0,1,1) × (0,1,1)12 with constant –1.7127 OK
ARIMA (0,1,1) × (0,1,0)12 with constant –0.6202 OK
ARIMA (0,1,0) × (0,1,1)12 with constant –2.7277 OK

Table 2
Modified Box–Pierce (Ljung–Box) chi-square statistic

ARIMA (0,1,0) × (0,1,1)12

Lag 12 24 36 48
Chi-square 49.29 58.75 65.06 87.25
DF 10 22 34 46
p-value 0.000 0.000 0.001 0.000

ARIMA (0,1,1) × (0,1,1)12

Lag 12 24 36 48
Chi-square 13.60 32.41 38.68 52.48
DF 9 21 33 45
p-value 0.137 0.053 0.229 0.207
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two rivers. As a general conclusion, the RBF neural network 
of the four rivers for SAR prediction has good performance 
because of R2, IA, and E re close to 1.

3.8. Comparison ARIMA and RBF for SAR prediction 
of the four rivers

Tables 7 and 8 indicate the forecast error for predictions 
of SAR from ARIMA and RBF neural network for Aras and 
Sepid rud river. As presented in Table 7, both ARIMA and 

RBF models reached acceptable forecast errors for Aras 
River. However, in the Sefid-Rud river, the forecast error of 
RBF much lower than ARIMA, which means the RBF neu-
ral network is more suitable than ARIMA for the predic-
tion of SAR (Tables 7 and 8). Another advantage of the RBF 
neural network is in model building 144 monthly data were 
used, and future predicting was for 36 months. However, 
for the ARIMA time series 168 monthly data were used for 
building, and only a 12-month prediction was predicted. 
For Karun and Mond rivers, we reached similar results as 

Fig. 4. Trend analysis plot, Box–Cox plot, time series plot (difference = 1) and trend analysis plot for SAR of the Sefid-Rud river 
(difference = 1).
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Table 3
Different ARIMA time series models of SAR for the Sepidrud River

Model AIC Box–Pierce (Ljung–Box) chi-square statistic

ARIMA (0,1,1) (0,1,1)12 –1.8177

Lag 12 24 36 48
Chi-square 12.99 18.63 28.64 39.52
DF 10 22 34 46
p-value 0.224 0.668 0.727 0.739

ARIMA (1,1,1) (0,1,1)12 0.1344

Lag 12 24 36 48
Chi-square 8.16 13.42 20.43 32.09
DF 9 21 33 45
p-value 0.518 0.893 0.957 0.926

ARIMA (0,1,2) (1,1,0)12 0.5793

Lag 12 24 36 48
Chi-square 8.25 18.24 27.13 38.42
DF 9 21 33 45
p-value 0.510 0.634 0.754 0.745

ARIMA (0,1,2) (0,1,1)12 0.1284

Lag 12 24 36 48
Chi-square 9.23 14.14 21.48 34.71
DF 9 21 33 45
p-value 0.417 0.864 0.939 0.866

ARIMA (0,1,2) (2,1,0)12 0.3582

Lag 12 24 36 48
Chi-square 10.90 16.60 27.75 37.36
DF 8 20 32 44
p-value 0.208 0.679 0.682 0.750

ARIMA (1,1,2) (1,1,0)12 2.5761

Lag 12 24 36 48
Chi-square 7.01 17.92 24.82 34.14
DF 8 20 32 44
p-value 0.536 0.592 0.813 0.857

ARIMA (1,1,1) (1,1,0)12 0.5740

Lag 12 24 36 48
Chi-square 7.18 18.26 25.16 34.03
DF 9 21 33 45
p-value 0.618 0.632 0.834 0.884

ARIMA (3,1,0) (0,1,1)12 2.2614

Lag 12 24 36 48
Chi-square 13.09 18.24 25.40 35.33
DF 8 20 32 44
p-value 0.109 0.571 0.789 0.821

ARIMA (3,1,0) (1,1,0)12 1.7658

Lag 12 24 36 48
Chi-square 8.79 21.51 28.06 37.89
DF 8 20 32 44
p-value 0.360 0.368 0.666 0.730

Fig. 5. Autocorrelation function and partial autocorrelation function plots for SAR-Aras river (difference = 10).
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the Sefid-Rud river. Therefore, RBF neural network much 
better for future prediction than the ARIMA time series for 
the Sefid-Rud river, Karun, and Mond rivers.

Fig. 10 presents the comparison of SAR forecasting using 
the ARIMA time series and RBF neural network for Aras, 
Sefid-Rud, Karun, and Mond rivers. According to Fig. 10, 
36 months RBF neural network and 12 months forecast-
ing of the ARIMA time series of SAR predictions for the 
Aras river relatively matches the measured data. However, 
some of the measured data are beyond the RBF model pre-
diction. RBF neural network prediction of SAR for Sefid-Rud 

River is very match to the measured data, which indicates 
the reliability of RBF forecasting of SAR for Sefid-Rud River. 
However, the reliability of the 12 month SAR projection of 
the ARIMA time series for the Sefid-Rud river is not the same 
as the RBF neural network. Thirty-six month SAR predic-
tion of RBF neural network of Karun River as indicated in 
Fig. 10 except a few points match to the measured data. 
However, the forecasting of the non-seasonal ARIMA time 
series of Karun River is a horizontal line, which does not 
describe the seasonality of measured data. Therefore, the 
RBF neural network perdition more reliable than ARIMA 

Table 4
different nonseasonal ARIMA time series models for Karun River

Model ACI Box–Pierce (Ljung–Box) chi-square statistic

ARIMA (0,1,1) 2.9317

Lag 12 24 36 48
Chi-square 10.97 19.44 32.97 40.82
DF 11 23 35 47
p-value 0.446 0.675 0.566 0.725

ARIMA (3,1,0) 6.9444

Lag 12 24 36 48
Chi-square 11.88 20.01 36.16 48.27
DF 9 21 33 45
p-value 0.220 0.521 0.323 0.342

Fig. 6. Process of converting SAR data of the Karun River to be stationary in mean and variance.
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prediction in this river. The SAR prediction of Mond River 
using the RBF neural network is very well-matched to the 
measured data, which describe the reliability of RBF neu-
ral network prediction. ARIMA time series prediction for 
12 months in Mond River reaches relatively good predic-
tion, but not the same as RBF neural network projection. 
In conclusion, the RBF neural network reached a better 
prediction related to ARIMA time series in the four rivers.

4. Discussion

Several mathematical models have been developed 
for forecasting water quality in surface water to help 
water quality management for planning and performance. 
The limited studies have carried out using different types 
of ANN for the SAR predictions of water in rivers, which 
include the working of Asadollahfardi et al. [16], Azad et 

Fig. 7. Autocorrelation and partial autocorrelation plots for SAR of the Karun River.

Fig. 8. Process of converting SAR data of the Mond River to be stationary in mean and variance.
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al. [17], Sattari et al. [18], and Singh [19], Al-Obadi et al. 
[20], and Rahnama et al. [29]. The present study differs 
from the mentioned researches because we compared the 
results of the forecasting of SAR of the four rivers using 
ARIMA and RBF neural networks, which have not been 
reported in the literature. As mentioned in the introduc-
tion section, a few studies compared ARIMA and ANNs for 
predictions. However, none of the studies was about water 

quality. There were about forecasting tourist arrival, par-
ticulate matter in urban areas, port productivity, and berth 
effectiveness, the incidence of acquired immunodeficiency 
syndrome (AIDS), and the economy.

Jayawardena and Lai [7], Sun et al. [8], Asadollahfardi 
[9], Kurnc et al. [10], Asadollahfardi et al. [11], Abudu et 
al. [12], Ranjbar and Khaledian [13], Arya and Zhang [14], 
and Salmani and Salmani Jajaei [15] applied ARIMA time 

Fig. 9. Autocorrelation function and partial plots of for SAR-Karun river.

Table 5
Seasonal Box–Jenkins time series for the SAR

Model ACI Box–Pierce (Ljung–Box) chi-square statistic

ARIMA (0,1,2) × (1,1,0)12 12.91

Lag 12 24 36 48
Chi-square 13.72 29.80 45.71 54.65
DF 9 21 33 45
p-value 0.133 0.096 0.070 0.154

ARIMA (0,1,2) × (1,1,1)12 12.44

Lag 12 24 36 48
Chi-square 13.71 21.92 36.12 47.36
DF 8 20 32 44
p-value 0.090 0.345 0.282 0.337

ARIMA (1,1,1) × (0,1,2)12 12.47

Lag 12 24 36 48
Chi-square 13.56 20.97 33.80 43.70
DF 8 20 32 44
p-value 0.094 0.399 0.380 0.484

ARIMA (1,1,1) × (1,1,1)12 12.45

Lag 12 24 36 48
Chi-square 13.65 21.11 35.06 45.59
DF 8 20 32 44
p-value 0.091 0.391 0.325 0.406

ARIMA (2,1,1) × (0,1,2)12 14.47

Lag 12 24 36 48
Chi-square 13.38 21.69 34.91 45.52
DF 7 19 31 43
p-value 0.063 0.300 0.287 0.368

ARIMA (2,1,1) × (1,1,1)12 14.23

Lag 12 24 36 48
Chi-square 12.45 20.81 35.37 47.16
DF 6 18 30 42
p-value 0.053 0.289 0.229 0.270



E. Rahnama et al. / Desalination and Water Treatment 218 (2021) 193–209206

Table 6
Error in training and performance of RBF models for the SAR prediction of Aras, Sefid-Rud, Karun and Mond River

Rivers Model MSE MBE R2 IA E

Training Testing

Aras RBF (normalized) 0.00175 0.06012 0.907 0.989 0.964
Sefid-Rud RBF (normalized) 0.0255 0.01566 0.96 0.9975 0.990
Karun RBF (normalized) 0.00026 0.047 0.95 0.999 0.999
Mond RBF (normalized) 0.0009 –0.06 0.92 0.981 0.995

Table 7
Comparison of forecast error for ARIMA time series and RBF neural network for Aras and Sefid-Rud rivers

Sample 
period

Aras river Sefid-Rud river

Actual values Predict values Forecast error Actual values Predict values Forecast error

RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA

1 1.296 – 1.472 – –0.135 – 2.108 – 1.989 – 0.057 –
2 2.004 – 2.052 – –0.024 – 3.893 – 3.774 – 0.031 –
3 1.492 – 1.632 – –0.094 – 4.294 – 4.175 – 0.028 –
4 2.83 – 2.729 – 0.036 – 1.259 – 1.140 – 0.095 –
5 2.774 – 2.684 – 0.033 – 2.59 – 2.471 – 0.046 –
6 2.535 – 2.488 – 0.019 – 0.732 – 0.613 – 0.163 –
7 2.366 – 2.349 – 0.007 – 1.248 – 1.129 – 0.096 –
8 2.187 – 2.563 – –0.172 – 0.473 – 0.354 – 0.252 –
9 2.564 – 2.511 – 0.021 – 0.876 – 0.757 – 0.136 –
10 2.507 – 2.465 – 0.017 – 1.324 – 1.205 – 0.090 –
11 2.479 – 2.442 – 0.015 – 0.907 – 0.788 – 0.132 –
12 2.639 – 2.573 – 0.025 – 1.177 – 1.058 – 0.101 –
13 1.423 – 1.988 – –0.397 – 4.069 – 3.950 – 0.029 –
14 2.579 – 2.524 – 0.021 – 3.52 – 3.401 – 0.034 –
15 2.78 – 2.688 – 0.033 – 2.833 – 2.714 – 0.042 –
16 2.566 – 2.156 – 0.160 – 0.155 – 0.036 – 0.770 –
17 2.432 – 1.423 – 0.415 – 3.608 – 3.489 – 0.033 –
18 2.432 – 1.403 – 0.423 – 1.498 – 1.379 – 0.080 –
19 2.566 – 1.512 – 0.411 – 1.73 – 0.614 – 0.645 –
20 2.558 – 1.507 – 0.411 – 2.444 – 2.325 – 0.049 –
21 2.566 – 1.515 – 0.410 – 2.24 – 2.121 – 0.053 –
22 2.566 – 2.513 – 0.021 – 0.144 – 0.025 – 0.829 –
23 2.542 – 2.493 – 0.019 – 2.361 – 2.242 – 0.051 –
24 2.512 – 2.469 – 0.017 – 2.766 – 2.647 – 0.043 –
25 1.703 1.703 1.805 1.826 –0.060 –0.072 3.517 3.517 3.398 1.360 0.034 0.613
26 1.84 1.84 1.918 2.091 –0.042 –0.137 4.271 4.271 4.015 1.735 0.060 0.594
27 2.491 2.491 2.451 2.776 0.016 –0.115 3.522 3.522 3.403 1.804 0.034 0.488
28 2.614 2.614 1.553 2.935 0.406 –0.123 4.068 4.068 3.949 1.405 0.029 0.655
29 2.599 2.599 2.540 2.837 0.023 –0.092 2.596 2.596 2.135 1.752 0.178 0.325
30 2.512 2.512 2.469 2.662 0.017 –0.060 2.424 2.424 2.305 1.435 0.049 0.408
31 2.512 2.512 2.469 2.520 0.017 –0.003 2.512 2.512 2.393 1.165 0.048 0.536
32 2.614 2.614 1.954 2.451 0.252 0.062 2.057 2.057 1.395 1.177 0.322 0.428
33 2.432 2.432 1.404 2.561 0.423 –0.053 2.156 2.156 2.037 1.147 0.055 0.468
34 2.556 2.556 2.505 2.578 0.020 –0.009 3.037 3.037 2.918 1.128 0.039 0.629
35 2.432 2.432 2.403 2.462 0.012 –0.012 1.952 1.952 1.833 1.248 0.061 0.361
36 2.516 2.516 2.472 2.340 0.017 0.070 1.186 1.186 1.067 1.195 0.101 –0.008
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series to predict different water quality in surface water. 
None of the mentioned studies forecasting the SAR of rivers 
using the ARIMA time series.

5. Conclusions

The results of developing the Box–Jenkins time series 
(ARIMA) and the RBF neural network for Aras, Sepidrud, 
Karun, and Mond River summarizes as follows:

• Between different ARIMA models for SAR prediction 
of Aras, Sepidrud, Karun, and Mond Rivers, ARIMA 

(0,1,1) × (0,1,1)12, ARIMA (0,1,1) (0,1,1)12, ARIMA (0,1,1), 
and ARIMA (0,1,2) × (1,1,1)12, with minimum AIC of 
–1.7127, –1.8177, 2.9317, and 12.44 were selected, respec-
tively. The residual of all the selected ARIMA time series 
was independent (p-value > 0.05), which indicates the 
accuracy of the selected models.

• Using RBF neural network for SAR prediction of Aras, 
Sepidrud, Karun, and Mond Rivers with normalized 
data reached suitable training, which means squared 
error (MSE are between 0.00026 and 0.0255) and MBE 
(MBE are between 0.01566 and 0.0612) for training is very 
low.

Table 8
Comparison of forecast error for the ARIMA time series and RBF neural network for Karun and Mond rivers

Sample 
period

Karon river Mond river

Actual values Predict values Forecast error Actual values Predict values Forecast error

RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA RBF ARIMA

1 7.050 – 6.584 – 0.066 – 4.593 – 3.736 – 0.187 –
2 8.782 – 8.624 – 0.018 – 36.409 – 38.733 – –0.064 –
3 7.358 – 7.286 – 0.010 – 34.935 – 37.112 – –0.062 –
4 7.777 – 7.452 – 0.042 – 43.467 – 46.497 – –0.070 –
5 5.033 – 5.100 – –0.013 – 41.352 – 44.170 – –0.068 –
6 8.946 – 8.778 – 0.019 – 58.291 – 62.803 – –0.077 –
7 5.603 – 5.636 – –0.006 – 42.618 – 45.563 – –0.069 –
8 5.371 – 5.418 – –0.009 – 27.770 – 29.230 – –0.053 –
9 5.754 – 5.778 – –0.004 – 4.116 – 3.211 – 0.220 –
10 7.054 – 7.000 – 0.008 – 3.307 – 2.321 – 0.298 –
11 6.308 – 6.299 – 0.001 – 10.140 – 9.837 – 0.030 –
12 4.790 – 4.872 – –0.017 – 37.689 – 40.141 – –0.065 –
13 6.775 – 6.738 – 0.005 – 30.196 – 31.899 – –0.056 –
14 3.341 – 3.510 – –0.051 – 43.804 – 46.868 – –0.070 –
15 5.531 – 5.568 – –0.007 – 41.557 – 44.396 – –0.068 –
16 4.658 – 4.748 – –0.019 – 51.502 – 55.335 – –0.074 –
17 6.113 – 5.116 – 0.163 – 55.918 – 60.193 – –0.076 –
18 5.197 – 5.254 – –0.011 – 39.630 – 42.276 – –0.067 –
19 6.829 – 6.523 – 0.045 – 62.702 – 67.655 – –0.079 –
20 6.723 – 6.123 – 0.089 – 42.741 – 45.698 – –0.069 –
21 6.726 – 6.692 – 0.005 – 38.100 – 40.593 – –0.065 –
22 5.844 – 5.863 – –0.003 – 17.040 – 17.427 – –0.023 –
23 9.231 – 8.456 – 0.084 – 5.360 – 4.579 – 0.146 –
24 3.940 – 4.725 – –0.199 – 18.630 – 20.176 – –0.083 –
25 4.994 4.994 5.064 6.150 –0.014 –0.232 21.475 21.475 22.306 19.43 –0.039 0.095
26 3.765 3.765 3.908 6.150 –0.038 –0.634 13.964 13.964 15.042 36.12 –0.077 –1.587
27 3.960 3.960 4.092 6.150 –0.033 –0.553 24.695 24.695 25.848 40.55 –0.047 –0.642
28 3.960 3.960 4.258 6.150 –0.075 –0.553 5.965 5.965 5.245 43.70 0.121 –6.327
29 5.630 5.630 4.635 6.150 0.177 –0.092 39.159 39.159 41.758 45.73 –0.066 –0.168
30 4.055 4.055 4.181 6.150 –0.031 –0.517 39.630 39.630 42.276 49.07 –0.067 –0.238
31 5.096 5.096 5.159 6.150 –0.012 –0.207 27.706 27.706 29.160 44.54 –0.052 –0.608
32 4.538 4.538 4.035 6.150 0.111 –0.355 26.120 26.120 27.415 36.97 –0.050 –0.416
33 3.064 3.064 3.954 6.150 –0.291 –1.007 10.973 10.973 10.754 22.53 0.020 –1.054
34 5.184 5.184 5.521 6.150 –0.065 –0.186 15.030 15.030 15.216 22.23 –0.012 –0.479
35 5.259 5.259 5.313 6.150 –0.010 –0.169 5.611 5.611 3.853 21.46 0.313 –2.826
36 7.785 7.785 7.012 6.150 0.099 0.210 15.146 15.146 15.344 32.82 –0.013 –1.167
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• The performance of the RBF neural network for the four 
rivers also are reliable because the coefficient of deter-
mination (R2 are between 0.907 and 0.960), index of 
agreement (IA are between 0.981 to 0.999), and the Nash-
Sutcliffe Efficiency (E are between 0.964 and 0.999) indi-
cate the accuracy of the predictions.

• Thirty-six months RBF neural network and 12 months 
forecasting of ARIMA time series of SAR predictions for 
Aras river relatively match to the measured data and 
forecast error of both were similar. 

• Although, we trained the RBF neural networks with 
fewer input data than ARIMA and the SAR forecast of 
RBF was for 3 y, the RBF has a more accurate prediction 
than the ARIMA time series model with more input data 
and 1 y forecast. In general, we could report that the RBF 
neural network for SAR prediction in the rivers is more 
reliable than the ARIMA time series.
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