

Improvement of the estimation method for non-point source pollution load reduction in Korean total maximum daily load management system

Jichul Ryu*, Jiyeon Choi, Jinsun Kim, Jaehong Park, Hasun Hwang, Dong Seok Shin, Jaekwan Lee

Water Environment Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Republic of Korea, email: ryu0402@korea.kr

Received 13 August 2020; Accepted 4 December 2020

ABSTRACT

This study focused on improving the regression equations for the cumulative rainfall ratio (CRR), cumulative pollutant load ratio (CPR), and average pollutant load reduction efficiency of non-point source (NPS) pollution load reduction facilities to facilitate the calculation of NPS pollution load cutback used in South Korea's technical guidelines for the total maximum daily load. The recently updated hourly rainfall data from the Korea Meteorological Administration and NPS pollution load monitoring data from the Ministry of Environment (MOE) were used. Furthermore, the updated rainfall patterns and data together with the existing regression equation were used to formulate an improved regression equation for the CPR was used to calculate the CRR. Additionally, the improved regression equation for the CPR was used to determine the area type weighted CRR based on (i) CRR of land cover and (ii) public data provided by the MOE for 2008–2014. Also, the pollutant load reduction efficiency of the NPS pollution reduction facilities was updated using data of the inflow and outflow monitoring of NPS pollution reduction facilities obtained from various pilot projects or research on NPS pollution load by the MOE and by adding efficiency data of previously excluded low impact development techniques.

Keywords: Cumulative rainfall ratio; Cumulative pollutant load ratio; Pollutant load reduction efficiency; Non-point source pollution; Total maximum daily load

1. Introduction

Owing to the limitations of the existing methods for improving the quality of river water by strengthening water quality standards for pollutant emission facilities, South Korea's Ministry of Environment (MOE) has introduced the total maximum daily load (TMDL) system [1]. The TMDL system allows management of pollutant load with respect to both water quality and amount of effluent flow [2–6].

The special act on the four main rivers has made implementation of the TMDL system mandatory for the four main river water systems [2–5]. Additionally, based on the Water Environment Conservation Act [6], the TMDL system has been operational via consultation in the Jinwicheon and Sapgyocheon water systems among the various water systems connected to the sea.

The procedure of the TMDL system from planning to execution is as follows. First, the MOE determines the water quality target for cities and provinces. The governor of each city or province then develops a basic plan to determine the water quality target. The effluent pollutant load is allocated by unit basin to achieve the devised water quality target. Second, municipality heads within each city or province establish an enforcement plan including the yearly pollutant reduction plan to achieve the water quality target and the allocated load from this basic plan. Once the enforcement plan is established, the municipal heads perform annual performance evaluations of the plan to check whether the allocated load has been achieved [7,8].

^{*} Corresponding author.

^{1944-3994/1944-3986 © 2021} Desalination Publications. All rights reserved.

According to the TMDL system, the amount of point and non-point source (NPS) pollution must be quantitatively calculated. The amount of reduction can be scientifically determined based on the technical guidelines for TMDL [9] developed by the MOE [10], which is available to all the people who need such data to establish the plan.

According to the technical guidelines for TMDL [9], NPS pollutant load reduction is first calculated by deriving the cumulative rainfall ratio (CRR) using the designed rainfall data for the non-point reduction facility and then by calculating the cumulative pollutant load based on the CRR and cumulative pollutant load ratio (CPR). The result is subsequently multiplied with the pollutant load occurred from the catchment area of the NPS pollution reduction facility to determine the NPS pollutant load in the designed rainfall. Finally, the NPS pollutant load is multiplied with the average pollutant load reduction efficiency of the NPS pollution reduction facilities to determine the final NPS pollutant load reduction.

The regression equations used to derive the CRR and CPR were devised based on rainfall data of 10 y ago and the inflow/water quality monitoring data from some NPS pollution reduction facilities. Therefore, calculating the NPS pollution load reduction based on the effluent characteristics by load cover based on more recent rainfall patterns is difficult.

In addition, the average pollutant load reduction ratio does not consider the fact that neither do NPS pollution reduction facilities implement low impact development (LID) techniques nor have LID techniques been sufficiently subdivided. Therefore, the reduction efficiency in the technical guidelines for TMDL [9] need to be updated by adding data obtained from monitoring NPS pollution reduction facilities under various rainfall situations.

The aim of this study is to improve the various regression equations used to calculate the NPS pollution load reduction and the average NPS pollution load reduction efficiency in the technical guidelines for TMDL [9] using the most up-to-date hourly rainfall data and NPS-based monitoring data from the MOE. This will facilitate more accurate determination of NPS pollution load reduction in the TMDL system in the near future.

2. Materials and methods

2.1. Estimation method for NPS pollution load reduction in the TMDL system

The technical guideline [9] for the TMDL system of the MOE in South Korea provides equations for calculating the amount of NPS pollution load reduction. In this guideline, the amount of NPS pollution load is calculated using unit load of each landcover type (Table 1, Eq. (1)), and then, the amount of load flow into the NPS pollution reduction facility is calculated by multiplying the NPS pollution load and the specific ratio (CRR and CPR).

Generated NPS pollution load = landcover area × unit load (1)

where the landcover area is the catchment area (km²), and the unit load is average amount of nonpoint source pollution each landcover by area (kg/km²/d, Table 1).

Table 1 Average unit load by landcover and water quality (kg/km²/d)

Landcover	BOD	TN	TP
Agricultural land	1.59	9.44	0.24
Paddy	2.30	6.56	0.61
Forest	0.93	2.20	0.14
Impervious area	85.90	13.69	2.10
Others	0.960	0.759	0.027

The CRR and the cumulative pollution load ratio can be calculated using Eqs. (2) and (3) in the technical guideline [9]. The equations are suggested based on the design storm ranges in the technical guideline.

Cumulative rainfall ratio =
$$a \times \ln(P) + b$$
 (2)

where *a* is 0.2716 if the CRR is based on the rainfall or 0.2445 if it is based on the rainfall intensity; *b* is -0.2425 if the CRR is based on rainfall or 0.3174 if it is based on the rainfall intensity; and *P* is the design rainfall (mm) if the CRR is based on rainfall or the design rainfall intensity (mm/h) if it is based on the rainfall intensity.

Cumulative pollutant load ratio =
$$e^{\left[a \times \{\ln(\text{Cumulative rainfall})\}^2 + b \times \ln(\text{Cumulative rainfall ratio})\right]}$$
 (3)

where a and b are determined based on the water quality items listed in Table 2.

Finally, the amount of NPS pollution reduction load is calculated by multiplying the NPS pollution load in the NPS pollution reduction facility by the reduction efficiency (Table 3).

2.2. Improvement of the CRR estimation

The CRR is a coefficient that determines how much cumulative rainfall flows into the NPS pollution reduction facility considering the design storm. This CRR is calculated through the regression equation (Eq. (2)) according to the technical guideline [9]. This regression equation was derived from the daily weather data of four representative weather stations in South Korea. The process of deriving this CRR regression equation is as follows. First, the accumulated rainfall is calculated in units of 1 mm from the rainfall data for 10 y, and this accumulated amount of rainfall is divided by the total amount of rainfall for 10 y in each weather station. Finally, the relation between the

Table 2 Constants *a* and *b* in Eq. (3)

Constant	BOD	TN	TP
а	-0.0184	-0.0030	-0.0018
b	0.6922	0.7509	0.7931

Table 3			
D. J	- ((: -:	- (NIDC	

Red	uction	efficiency	of NPS	pollution	load r	eduction	facilities
-----	--------	------------	--------	-----------	--------	----------	------------

Category		BOD	TN	TP
	Pond	34	28	36
Retention type	Underground retention facility	25	24	20
	Constructed wetland	53	37	60
	Porous pavement	75	83	65
	Porous retention facility	69	58	69
Infiltration trues	Infiltration trench	77	62	73
mintration type	Dry well			
	Porous tube	53	72	46
	Infiltration gutter			
	Vegetated filter strip	44	42	42
Eiltor type	Vegetated swale	34	45	51
ritter type	Sand-based filtering facility	50	16	54
	Manufacturing filter system	BOD T 34 24 ound retention facility 25 24 ted wetland 53 33 avement 75 88 etention facility 69 56 on trench 77 66 ube 53 77 on gutter 34 42 d filter strip 44 42 d swale 34 42 sed filtering facility 50 42 turing filter system 50 42 oot 75 77 den 16 1 garden 54 42 ed filter box 16 1 15 9 sedimentation) 80 2	40	54
	Porous pot	75	73	72
Bio rotantian tuna	Rain garden			
bio-retention type	Passage garden	54	49	65
	Tree-based filter box			
Whirlpool-based filtering system	n	16	11	22
Screen-based facility		15	9	19
Facility type (ultra-speed coagul	Facility type (ultra-speed coagulation and sedimentation)8020		85	

calculated CRR and the daily rainfall amount is analyzed, and the regression equation is developed (Eq. (1), Fig. 1) [11].

However, because this regression equation is not based on data from all weather stations in South Korea, it does not consider recent changes in rainfall patterns since 2008 due to climate change. Furthermore, it uses the daily cumulative rainfall and does not consider continuous rainfall events that exceed 1 d, leading to a less accurate CRR.

To solve these issues, this study considers the hourly rainfall and rainfall intensity data [12] for the last 30 y obtained from 64 weather stations and the appropriate retention time (24 h) in a constructed wetland, recommended by the MOE [13], to derive the regression equation through a correlative analysis of the cumulative rainfall and CRR at each weather station. Finally, the regression equation obtained from all weather stations was averaged to develop a regression equation for the representative CRR estimation.

2.3. Improvement of the CPR estimation

The cumulative pollution load ratio is a coefficient that is used to determine how much of the NPS pollution load amount flows into the NPS pollution reduction facility in rainfall events. This coefficient is calculated using the regression equation derived by analyzing the relation between the rainfall-runoff monitoring data of the 83 NPS pollution reduction facilities installed by the MOE in South Korea and the CRR as calculated above (Figs. 2 and 3).

However, this single regression equation was developed using effluent rainfall monitoring data obtained from 83 NPS pollution load reduction facilities mostly installed in impervious catchment areas. Thus, estimating the CPR based on the NPS runoff characteristics of other regions with a different impervious ratio is a challenging task.

To circumvent this issue, the long-term NPS runoff monitoring data [14–17] from each of the 16 landcover types

Fig. 1. Relation between CRR and rainfall (mm).

Fig. 2. Relation between the CRR and CPR of TN and TP in a constructed wetland [11].

Fig. 3. Relation between the CRR and CPR of BOD, TN, and TP [11].

provided by the MOE were used to analyze the cumulative flow ratio and the CPR of BOD, TN, TP, and SS. Thus, a regression equation was derived for the cumulative load ratio estimation by landcover. To derive the regression equation, the current single regression equation (Eq. (3)) was maintained, whereas the landcover was varied, and the monitoring data with the rainfall (about 80 mm) corresponding to 75% of the CRR analyzed using the CRR estimation were utilized.

Post data selection, the cumulative rainfall (mm) and cumulative pollutant load (g) of the monitoring data based on each rainfall event were calculated, and the results were sorted in descending order. The results were then divided by the maximum cumulative rainfall and the maximum cumulative pollutant load to derive the CPR. From the CRR and CPR, 1n was reduced to derive the regression equation for estimating the cumulative pollutant load. The regression equation by rainfall events was averaged to derive the final regression equation for the CPR estimation by landcover (Fig. 4).

Furthermore, the CPR in the final catchment area was determined using the area weighting by landcover.

2.4. Estimation of the average NPS pollution load reduction efficiency

The average NPS pollution load reduction efficiency of the NPS pollution reduction facility in the TMDL Guidelines [9] was devised based on monitoring data of several NPS pollution reduction facilities. However, the MOE continuously monitored the data until 2018, and these data need to be updated. Furthermore, while some NPS pollution reduction efficiency of LID has been included in the TMDL guidelines [9], they are not subdivided, and newer LID technique recommended in MOE, such as "green roofs" have been excluded in the TMDL guidelines [9], thus requiring revisions.

In this study, all NPS pollution monitoring data from key MOE studies on NPS pollution load reduction facilities were surveyed and analyzed, including the NPS pollution Reduction Facility Implementation Pilot Projects in four main river water systems (2008–2014), Zero Rainwater Run-out Pilot Project (2015–2018), monitoring the effects of government-subsidized NPS pollution load reduction facilities (2016–2017), and effective NPS Pollution Load Management Techniques Development Project [18]. This study aimed to include NPS pollution reduction efficiency of LID that had neither been updated nor existed prior to 2014. In addition, the newly integrated NPS pollution reduction efficiency of LID were subdivided.

To determine the average NPS pollution load reduction efficiency of NPS pollution load reduction facilities in an objective manner, the summation of loads, which is used to calculate the reduction efficiency by summing the inflow and outflow pollutant load based on rainfall events, was used. The efficiency was summarized using the criteria developed by reduction facilities in the NPS pollution load facility installation and management operation manual provided by the MOE [13].

3. Results and discussion

3.1. Improvement of the CRR estimation

Fig. 5 shows the correlation between the cumulative rainfall and CRR by weather stations. When the CRR converges to 1, the cumulative rainfall is approximately 450 mm.

CRR

Fig. 4. Example of the determination of the regression equation for the CPR.

Fig. 5. Correlation between the cumulative rainfall and CRR using the hourly rainfall data for the last 30 y.

Both the cumulative rainfall and CRR show a high correlation with $R^2 > 0.9$. In addition, the regression equation and regression constant by weather stations in the form of Eq. (1) were derived, as shown in Table 4.

In addition, Fig. 5 shows the graphs comparing the relation between the CRR and cumulative rainfall in the existing study [11] together with the results derived from this study. With cumulative rainfall at or below 10 mm, the CRR in the existing study is lower, whereas under high rainfall conditions, the CRR obtained in the existing studies is higher than that obtained in the present study. In addition, the CRR in the existing study converged to 1 with rainfall of approximately 100 mm, whereas it needed to reach about 450 mm in the present study. These changes are likely due to the consideration of hourly rainfall events in this study, which was not accounted for in the existing study.

Fig. 6 shows the correlation between the cumulative rainfall intensity and CRR using the weather stations rainfall data. When the CRR converges to 1, the cumulative rainfall intensity is approximately 40 mm/h. The cumulative rainfall intensity and CRR showed a high correlation with $R^2 > 0.90$.

Based on the correlation analysis, the regression constants by weather stations for regression Eq. (1) and the average constant were determined as shown in Table 5. Similar to the rainfall analysis, some differences from the existing results [11] were observed owing to the additional rainfall intensity characteristics considered in this study.

Thus, calculating the NPS pollution reduction load using the CRR provided in the technical guideline [9] indicates that the amount of the NPS pollution reduction load was underestimated when the rainfall intensity was below 10 mm/d or 2.5 mm/h.

3.2. Results of the improvement of the CPR estimation

The regression equation for estimating the CPR was applied to analyze 16 items based on the landcover characteristics (including orchard, upland, green house, other plantations, paddy, coniferous, broadleaf, mixed forest, public, industrial, transportation, cultural and educational, commercial, residential, artificial meadow, and other bare land), which were then divided into five large categories for the TMDL (agricultural land, paddy, forest, impervious area, and others). Fig. 7a shows the CPR based on the CRR by land category per TMDL. In the existing study [11], 76% of data used in the analysis were the rainfall-runoff survey data obtained from impervious areas, such as roads and parking lots. Therefore, the load ratio by pollutant based on the CRR is believed to be higher than the results obtained in the present study.

Table 4 CRR regression constants by weather stations

No.	Station	Name	CRR reg	ression co	nstant	No.	Station	Name	CRR reg	ression cor	istant
	no.		а	b	R^2	_	no.		а	b	R^2
1	90	Sokcho	0.1991	-0.1213	0.9673	33	201	Ganghwa	0.1630	-0.0003	0.9371
2	100	Daegwallyeong	0.1761	-0.0745	0.9609	34	202	Yangpyeong	0.1899	-0.1203	0.9757
3	101	Chuncheon	0.1740	-0.0457	0.9672	35	203	Icheon	0.1837	-0.0653	0.9607
4	105	Gangneung	0.1536	0.0611	0.9015	36	211	Inje	0.1632	0.0311	0.9459
5	108	Seoul	0.1723	-0.0533	0.9649	37	212	Hongcheong	0.1626	0.0080	0.9363
6	112	Incheon	0.1845	-0.0661	0.9663	38	216	Taebaek	0.1711	0.0087	0.9410
7	114	Wonju	0.1814	-0.0570	0.9694	39	221	Jecheon	0.1782	-0.0461	0.9604
8	115	Woolleungdo	0.1672	0.0720	0.8968	40	226	Boeun	0.1859	-0.0397	0.9537
9	119	Suwon	0.1921	-0.1052	0.9743	41	232	Cheonan	0.1960	-0.0860	0.9748
10	127	Chungju	0.1885	-0.0606	0.9703	42	235	Boryeong	0.1588	0.0769	0.9081
11	129	Seosan	0.1806	-0.0287	0.9484	43	236	Buyeo	0.1928	-0.0768	0.9593
12	130	Uljin	0.1809	-0.0082	0.9444	44	238	Geumsan	0.1820	-0.0260	0.9613
13	131	Cjeongju	0.1939	-0.0638	0.9630	45	243	Buan	0.1784	0.0088	0.9413
14	133	Daejeon	0.1819	-0.0408	0.9563	46	244	Ilsil	0.1898	-0.0482	0.9595
15	135	Chupungnyeung	0.1966	-0.0703	0.9765	47	245	Jeongeup	0.1870	-0.0256	0.9512
16	136	Andong	0.1998	-0.0486	0.9601	48	247	Namwon	0.1888	-0.0556	0.9593
17	138	Pohang	0.1673	0.0499	0.9120	49	260	Jangheung	0.2145	-0.1692	0.9767
18	140	Gunsan	0.1626	0.0648	0.9108	50	261	Haenam	0.2095	-0.1144	0.9709
19	143	Daegu	0.1748	0.0295	0.9349	51	262	Goheung	0.1960	-0.0913	0.9462
20	146	Jeonju	0.1912	-0.0552	0.9711	52	272	Yeongju	0.1875	-0.0596	0.9474
21	152	Ulsan	0.1744	0.0170	0.9198	53	273	Mungyeong	0.2040	-0.1088	0.9632
22	155	Masan	0.1914	-0.0965	0.9420	54	277	Yeongdeok	0.2018	-0.0678	0.9560
23	156	Gwangju	0.1997	-0.0927	0.9684	55	278	Euiseong	0.1717	0.0502	0.9258
24	159	Busan	0.1898	-0.0846	0.9387	56	279	Gumi	0.1942	-0.0517	0.9665
25	162	Tongnyeong	0.1985	-0.0998	0.9413	57	281	Yeongcheon	0.2000	-0.0584	0.9638
26	165	Mokpo	0.2115	-0.0881	0.9663	58	284	Geochang	0.1877	-0.0637	0.9550
27	168	Yeosu	0.2112	-0.1465	0.9578	59	285	Hapcheon	0.2050	-0.1314	0.9730
28	170	Wando	0.2084	-0.1401	0.9547	60	288	Millyang	0.1802	-0.0029	0.9253
29	184	Jeju	0.1829	-0.0404	0.9589	61	289	Sancheong	0.1990	-0.1555	0.9754
30	188	Seongsan	0.1970	-0.1231	0.9477	62	294	Geoje	0.1853	-0.0940	0.9255
31	189	Seoguipo	0.1755	-0.0462	0.9158	63	295	Namhae	0.2156	-0.2291	0.9628
32	192	Jinju	0.2046	-0.1453	0.9617	Avera	age		0.1752	-0.0089	0.9369

Fig. 6. Correlation between the cumulative rainfall intensity and CRR using the hourly rainfall data for the last 30 y.

Table 5	
CRR regression constants by weather stations based on rainfa	all intensity

No.	Station	Name	CRR reg	ression cor	nstant	No.	Station	Name	CRR reg	ression con	stant
	no.		а	b	R^2	-	no.		а	b	R^2
1	90	Sokcho	0.1813	0.4392	0.9127	33	201	Ganghwa	0.1523	0.4177	0.8976
2	100	Daegwallyeong	0.1704	0.4650	0.8968	34	202	Yangpyeong	0.1868	0.3592	0.9505
3	101	Chuncheon	0.1860	0.3898	0.9377	35	203	Icheon	0.1774	0.3985	0.9269
4	105	Gangneung	0.1440	0.5074	0.8436	36	211	Inje	0.1723	0.4351	0.9187
5	108	Seoul	0.1714	0.3830	0.9350	37	212	Hongcheong	0.1845	0.3822	0.9352
6	112	Incheon	0.1707	0.4014	0.9281	38	216	Taebaek	0.1728	0.4683	0.9145
7	114	Wonju	0.1768	0.4057	0.9363	39	221	Jecheon	0.1800	0.4006	0.9357
8	115	Woolleungdo	0.1828	0.4437	0.9198	40	226	Boeun	0.1671	0.4334	0.9124
9	119	Suwon	0.1720	0.3961	0.9305	41	232	Cheonan	0.1841	0.3848	0.9448
10	127	Chungju	0.1746	0.4149	0.9316	42	235	Boryeong	0.1654	0.4131	0.9223
11	129	Seosan	0.1664	0.4143	0.9127	43	236	Buyeo	0.1738	0.4007	0.9242
12	130	Uljin	0.1961	0.4379	0.9284	44	238	Geumsan	0.1815	0.4123	0.9297
13	131	Cjeongju	0.1627	0.4402	0.9104	45	243	Buan	0.1810	0.4026	0.9347
14	133	Daejeon	0.1752	0.4051	0.9285	46	244	Ilsil	0.1799	0.4098	0.9366
15	135	Chupungnyeung	0.1815	0.4448	0.9277	47	245	Jeongeup	0.1623	0.4359	0.9069
16	136	Andong	0.1791	0.4543	0.9176	48	247	Namwon	0.1814	0.3968	0.9322
17	138	Pohang	0.1417	0.5166	0.8385	49	260	Jangheung	0.1899	0.3550	0.9481
18	140	Gunsan	0.1681	0.4287	0.9149	50	261	Haenam	0.1822	0.3828	0.9435
19	143	Daegu	0.1678	0.4617	0.9034	51	262	Goheung	0.1581	0.4203	0.8927
20	146	Jeonju	0.1723	0.4233	0.9287	52	272	Yeongju	0.1944	0.3986	0.9347
21	152	Ulsan	0.1754	0.4295	0.9176	53	273	Mungyeong	0.1840	0.4221	0.9193
22	155	Masan	0.1702	0.3988	0.9074	54	277	Yeongdeok	0.1876	0.4439	0.9157
23	156	Gwangju	0.1716	0.4037	0.9358	55	278	Euiseong	0.1808	0.4413	0.9255
24	159	Busan	0.1617	0.4116	0.9000	56	279	Gumi	0.1801	0.4387	0.9210
25	162	Tongnyeong	0.1784	0.3911	0.9183	57	281	Yeongcheon	0.1819	0.4345	0.9229
26	165	Mokpo	0.1845	0.4088	0.9418	58	284	Geochang	0.1855	0.4131	0.9207
27	168	Yeosu	0.1893	0.3677	0.9412	59	285	Hapcheon	0.1775	0.4103	0.9255
28	170	Wando	0.1939	0.3471	0.9464	60	288	Millyang	0.1797	0.4171	0.9158
29	184	Jeju	0.1684	0.4214	0.9247	61	289	Sancheong	0.1847	0.3782	0.9302
30	188	Seongsan	0.1683	0.3627	0.9299	62	294	Geoje	0.1900	0.3317	0.9411
31	189	Seoguipo	0.1828	0.3407	0.9386	63	295	Namhae	0.1921	0.3255	0.9393
32	192	Jinju	0.1842	0.3851	0.9268	Avera	ge		0.1720	0.4187	0.9188

The results derived by land category show that "agricultural land" includes orchard, upland, green houses, and other plantations, and in all landcover excluding green houses, the CPR gradually increased after the CRR reached 0.5. It is believed that during rain, rainfall permeates on the surface (soil), and as the soil becomes saturated, rainfall runoffs occur.

Compared with the other landcover categories, the CPR by pollutant in green houses rapidly increased in a lower CRR. This might have occurred because rainfall runoffs in green houses did not permeate to the surface and were quickly discharged through the vinyl surface (Fig. 7b).

Fig. 7c shows that in paddies, the CPR by pollutant gradually when the CRR reached over 0.4. Such a trend was observed for all land categories, excluding green houses. Fig. 7d shows that in the forest category including coniferous forests, broadleaf forests, and mixed forests, the pollutant concentration caused by rainfall runoffs is very low. The cumulative pollution load ratio by pollutant based on the CRR gradually increases in forests, similar to the results observed for agricultural land and paddy categories. Fig. 7e shows the impervious area category divided into public, industrial, transportation, cultural and educational, commercial, and residential regions; here, compared with the other land categories, the CPR based on the cumulative rapidly increased. Additionally, impervious regions with high non-permeability (transportation, commercial, and industrial regions) exhibited a similar trend to the results of the existing study [11].

Public, cultural and educational, and residential regions included in the impervious area category have a higher ratio of permeable areas, such as landscaping and green spaces, than the transportation, commercial, and industrial regions. Thus, the cumulative load ratio by pollutant based on the CRR gradually increased.

Fig. 6f shows that the other land category includes artificial bare lands and artificial meadows. Similar to the

Fig. 7. Correlation between the CRR and CPR each landcover type: (a) TMDL land category, (b) "Agricultural land" category, and (c) "Paddy" land category.

Fig. 7. Correlation between the CRR and CPR each landcover type: (d) "Forest" land category, (e) "Impervious area" category, and (f) "Other" land category.

agricultural land, paddy, and forest categories, the CPR gradually increased according to the increase in the CRR. Table 6 shows the regression constants of the regression equation for the CPR estimation together with the land categories derived from Fig. 7.

Therefore, the cumulative pollution load ratio can vary greatly depending on the landcover characteristics. In particular, when calculating the NPS pollution reduction load in the NPS pollution reduction facilities in the perviousdominant area, the load can be overestimated with the technical guideline [9].

Furthermore, the existing CPR can be calculated using a simple equation that does not consider the runoff characteristics by landcover, whereas the improved CPR calculated in this study incorporates the runoff characteristics by landcover. The proposed regression constant by land category aims to determine the NPS pollutant load in a more concrete manner using the weighted-area averaging method (Fig. 8).

The method developed in this study can improve the limitations of the single regression equation provided in the existing study [11] and can be applied to estimate the efficient CPR based on the runoff characteristics by various landcovers.

3.3. Results of the average pollutant load reduction efficiency

The efficiency of the NPS pollution reduction facility installed by the NPS pollution load reduction pilot project

Table 6

Regression constants of the CPR

and R&D project of MOE was maximum for the planter box, an LID technique, for BOD and TN and was maximum for porous pavements for TP (Table 7). The efficiency by pollutant was 30%–89% for BOD, 37%–89% for TN, and 34%–98% for TP.

Compared with the TMDL guideline [9], the results from this study added to the average pollutant load reduction efficiency and provided additional efficiency data, such as the efficiency of green roofs and other facilities (such as infiltration trench, infiltration gutter, tree box filter, and bio-retention basin) that were evaluated to determine their reduction efficiency. Furthermore, result of calculation of reduction efficiency in the NPS pollution reduction facilities using the various domestic rain event monitoring data, In most facilities, the efficiency increased (from 82% to 410%) compared with that of the existing TMDL guideline [9] (Fig. 9).

The differences in the results of the existing and present studies stem from the addition of monitoring data from NPS pollution load reduction facilities under various rainfall event conditions. Furthermore, continuous efficiency monitoring would be required after the present study.

4. Conclusions and recommendations

The results of this study can be incorporated in official analyses to estimate the reduction in cumulative rainfall more accurately. Our results improved the estimation

Land category		Regression constant for the CPR						
		BC	D]	٢N	Т	Р	
		а	b	а	b	а	b	
'08 study result		-0.0184	0.6922	-0.0030	0.7509	-0.0018	0.7931	
	Orchard	-2.9830	3.2688	-1.5614	3.7618	-0.5032	3.8480	
A	Other plantations	-10.3645	-0.6599	-9.6385	-0.4468	-10.0605	-0.7442	
Agricultural	Upland	-4.1392	2.5185	-3.9167	2.8202	-4.3704	2.3405	
lanu	Green house	-0.8446	0.4872	-1.0054	0.2606	-1.0061	0.2337	
	Average	-4.5828	1.4037	-4.0305	1.5990	-3.9850	1.4195	
Paddy	Paddy	-3.9208	2.0492	-5.7049	1.4400	-4.4162	1.6479	
	Coniferous forest	0.9419	6.4648	1.3633	7.0971	0.3241	5.0864	
Forest	Mixed forest	0.6647	4.6977	0.6685	5.2218	0.5763	4.8721	
Forest	Broadleaf forest	3.3427	9.4516	3.0458	9.0344	2.2254	7.5938	
	Average	1.6498	6.8714	1.6925	7.1178	1.0419	5.8508	
	Public region	-0.1319	1.5063	-0.1397	1.4994	-0.1967	1.5465	
	Industrial region	-0.5958	0.3484	-0.6128	0.1826	-0.4333	0.6198	
Importations	Transportation region	-0.1241	0.7673	-0.1289	0.8105	-0.1030	0.8306	
area	Cultural and education	0.1449	2.2588	0.2451	2.4242	0.1672	2.2010	
alea	Commercial region	-0.2631	0.5058	-0.1626	1.0380	-0.2433	0.5624	
	Residential region	-0.0001	2.0244	0.0074	2.2381	0.0004	2.1426	
	Average	-0.1617	1.2352	-0.1319	1.3655	-0.1348	1.3172	
	Artificial bare land	-1.0322	2.2032	-0.9285	2.5286	-0.9612	2.5171	
Others	Artificial meadow	0.3054	3.5138	0.4109	3.6538	0.2502	3.5747	
	Average	-0.3634	2.8585	-0.2588	3.0912	-0.3555	3.0459	

Fig. 8. Comparison between the this study and the TMDL guideline for the estimation method for CPR.

Table 7

Results of the average	pollutant load	reduction	efficiency

Category	Туре	BOD	TN	TP
	Pond	51	45	46
Retention type	Underground retention facility	80	70	75
Constructed wetland	Constructed wetland	64	56	67
	Porous pavement	81	82	98
	Porous retention facility	66	58	62
Infiltration trues	Infiltration trench	87	84	85
mintration type	Dry well	88	89	88
	Porous tube	88	89	88
	Infiltration gutter	72	72	74
	Vegetated filter strip	61	67	64
	Vegetated swale	80	75	79
Pie estantion true	Tree box filter	79	75	72
Bio-retention type	Planter box	89	89	88
	Bio-retention basin	83	84	82
	Green roof	86	89	62
Filter-type facility		48	42	49
Whirlpool-based filtering system		30	24	34
Screen-based facility		40	37	37
Coagulation and sedimentation-type	e facility	71	42	70

of the NPS load reduction while reflecting the existing TMDL system plan in South Korea using hourly rainfall data and monitoring data related to various MOE NPS for reflecting up-to-date rainfall patterns and runoff characteristics by landcover.

Calculating the accurate amount of NPS pollution reduction load in the TMDL system is important because the amount of the reduction load can be used as pollutant load allocated for regional development. It was difficult to calculate the accurate amount of NPS pollution reduction load as the equations for calculating this amount suggested in the existing technical guidelines for the TMDL system were derived using meteorological data and rainfall-runoff monitoring data of the NPS pollution reduction facility at least 15 y ago.

Therefore, this study devised a new calculation method of the NPS pollution reduction in the technical guidelines for the TMDL system by utilizing the hourly rainfall data obtained from 64 weather stations and the rainfall-runoff data obtained by monitoring various points with different landcover and NPS pollution reduction facilities. Through this improved method of considering the characteristics of rainfall-runoff each landcover, the overestimated NPS pollution reduction load in pervious areas can be calculated more realistically, and it has become possible to calculate the NPS pollution reduction load underestimated below in a specific amount of rainfall more appropriately. In addition, the NPS pollution reduction efficiency calculated from the rainfall-runoff data of long-term monitored NPS pollution reduction facilities under various rainfall conditions can be helpful for more accurate NPS pollution reduction load calculation in the TMDL system.

However, the ripple effect of the improved method should be analyzed for the TMDL system for further research because, although there is no significant difference between the two methods when comparing the existing method and the improved method for the calculation of the NPS pollution reduction load at the NPS facilities at the urban area, in the case of NPS pollution reduction facilities at the permeable areas, the amount of NPS pollution reduction load calculated by the improved method can be significantly reduced compared with the existing method.

366

Fig. 9. Comparison between the present study and the TMDL guideline for the estimation method for the average pollutant load reduction efficiency: (a) BOD, (b) TN, and (c) TP.

In addition, since the some reduction efficiency in the NPS pollution reduction facilities derived in this study were rapidly increases compared with reduction efficiency recommended in the TMDL guideline, It may be necessary to apply the safety rate (10%~20%) to the reduction efficiency for stable operation of the TMDL system.

Acknowledgments

This research was supported by a grant from National Institute of Environmental Research (NIER), funded by a Ministry of Environment (MOE) of Republic of Korea (NIER-2018-01-01-030 & NIER-2019-01-01-033)

References

- D. Seo, E. Lee, C. Lee, K. Reckhow, Estimation of margin of safety for Korean TMDL development, Desal. Water Treat., 2 (2009) 19–23.
- [2] MOE, Act on the Improvement of Water Quality and Support for Residents of the Han River Basin, Law No. 13879, Ministry of Environment, Saejong, South Korea, 2007.
- [3] MOE, Act On Water Management and Resident Support in the Nakdong River Basin, Law No. 13879, Ministry of Environment, Saejong, South Korea, 2007.
- [4] MOE, Act On Water Management and Resident Support in the Geum River Basin, Law No. 13879, Ministry of Environment, Saejong, South Korea, 2007.
- [5] MOE, Act On Water Management and Resident Support in the Yeongsan and Seomjin River Basin, Law No. 13879, Ministry of Environment, Saejong, South Korea, 2007.
- [6] MOE, Water Environment Conservation Act, Law No. 15194, Ministry of Environment, Saejong, South Korea, 2013.

- [7] S.J. Lee, A legal study on quantity regulation system of water-quality pollutants, Korean Public Land Law Assoc., 52 (2011) 403–424.
- [8] J. Ryu, H.S. Hwang, S.J. Lee, E.K. Kim, Y.S. Kim, D. Kum, K.J. Lim, Y.H. Jung, Development of desktop-based LDC evaluation system for effectiveness TMDL, J. Korean Soc. Agric. Eng., 58 (2016) 67–74.
- [9] NIER, Technical Guidelines for TMDL, National Institute of Environmental Research, Incheon, South Korea, 2014.
- [10] MOE, Basic Policies of Total Pollution Management, Ministry of Environment, Saejong, South Korea, 2018.
- [11] NIER, Assessment Methods of Nonpoint Source Load(III) – Calculating Efficiency of Nonpoint Source Reduction Facilities, NIER No. 2008-17-967, National Institute of Environmental Research, Incheon, South Korea, 2008.
- [12] Korea Meteorological Administration, Hourly Precipitation Data, 2019. Available at: https://data.kma.go.kr/cmmn/main. do (accessed December 1, 2018).
- [13] MOE, Manual for Foundation and Management of NPS Reduction Facilities, 11-1480000-001430-01, Ministry of Environment, Saejong, South Korea, 2016.
- [14] GRWMC, Research on Long Term Monitoring for the Nonpoint Source Discharge, Guem River Watershed Management Committee, Deajeon, South Korea, 2014.
- [15] HRWMC, Research on Long Term Monitoring for the Nonpoint Source Discharge, Han River Watershed Management Committee, Hanam, South Korea, 2014.
- [16] NRWMC, Research on Long Term Monitoring for the Non-point Source Discharge, Nakdong River Watershed Management Committee, Changwon, South Korea, 2014.
- [17] YRWMC, Research on Long Term Monitoring for the Non-point Source Discharge, Youngsan River Watershed Management Committee, Gwangju, South Korea, 2014.
- [18] KEITI, Development of Efficient Nonpoint Source Management Technology, EW22-07-10,11,12, Korea Environmental Industry and Technology Institute, 2013.