Construction of $AgBiO_3/g-C_3N_4$ nanocomposites with enhanced photocatalytic activity and their application in the degradation of bisphenol A

Zehua Zhao^{a,†}, Yi Wang^{a,†}, Qiang Yu^b, Xiaochen Lin^a, Xiaowei Xu^a, Jun Zhang^a, Haijun Lu^a, Xiaoxi Chen^a, Dapeng Zhang^{a,*}

^aNanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, 8 Jiangwangmiao Street, Nanjing 210042, China, email: hazhangdapeng@163.com (D. Zhang) ^bSolid Waste Management Center, Department of Ecology and Environment of Jiangxi Province, 1131 Hongdu North Street, 330077, China

Received 4 January 2021; Accepted 3 April 2021

ABSTRACT

In this paper, AgBiO₃ and g-C₃N₄ materials were prepared by the ion-exchange method and calcination method, respectively. Their composite materials with different compositions were prepared by changing the dosage of raw materials during the synthetic process. The prepared nanocomposite materials were utilized to degrade bisphenol A (BPA) under visible light irradiation. By comparison, 50 wt.% AgBiO₃ in AgBiO₃/g-C₃N₄ (ABC-50) owns the supreme photocatalytic activity with 95.75% degradation efficiency of BPA and the degradation process was proven to follow the pseudo-first-order kinetics. In addition, the oxidative species of \cdot O₂ and h⁺ and OH were found to play equal roles in the photocatalytic reaction process.

Keywords: g-C₃N₄; AgBiO₃; Bisphenol A; Photocatalyst; Nanocomposite

1. Introduction

Bisphenol A (BPA) is one of the common organic compounds with two phenol moieties. It has significant properties such as low vapor pressure, moderate water solubility, and low volatility. BPA has been widely used to produce polymer materials such as polycarbonates, epoxy, and polysulfone resins [1]. The frequent and unorganized emission of BPA into the natural environment at low concentrations has aroused people and the government's great attention. It has been detected in soil, rivers and atmosphere in multiple countries and regions [2]. As a kind of common endocrine disruptors, BPA could affect nerve cell damage that can lead to the abnormal or disruptive behavior of humans and cause thyroid dysfunction [3,4]. Besides, previous work reported that the higher concentration of BPA (over 30 μ M) can hamper plant growth by invigorating the reaction oxygen species and lipid peroxidation in Arabidopsis [5]. Hence, it is urgent to find simple, cost-effective and efficient treatment methods to handle the trouble of BPA pollution. Some treatment methods like the physical method [6,7], the biological method [8,9] and the chemical method [10,11] have been reported before.

As a kind of environmentally friendly technology, the photocatalytic process has shown excellent performance in catalytic degradation of organic pollutants. As known, it is key for the process to find suitable photocatalytic semiconductors [12–14]. It is commonly thought that TiO_2 was firstly used as a photocatalyst for generating hydrogen by Fujishima and Honda in 1972 [15]. Whereafter, plenty of semiconductors such as CdS, ZnO, and Bi_2WO_6 have been employed for photocatalytic reaction. But most of these

^{*} Corresponding author.

⁺ These authors contributed equally to this work.

^{1944-3994/1944-3986} ${\ensuremath{\mathbb C}}$ 2021 Desalination Publications. All rights reserved.

photocatalytic materials are uneconomical and poor visible light absorbance [16]. In recent years, the successful preparation of graphitic phase carbon nitride $(g-C_3N_4)$ and its remarkable performance in the field of photocatalysis have aroused wide interest among scholars. $g-C_3N_4$ is a typical, metal-free, polymeric, novel semiconductor material with a bandgap of about 2.7 eV and can absorb visible light [17–20]. However, it's a central issue for $g-C_3N_4$ to improve the separation efficiency between holes (h⁺) and electron (e⁻) and the utilization efficiency of visible light, due to its wide bandgap, high recombination efficiency [21–23]. Some modifications have been often employed, including semiconductor coupling [24–26], metal doping [27,28], non-metal doping [29,30] and dye sensitization [31,32].

Bismuthates are considered as attractive perovskite materials owning to the stabilization in their exclusive electric structure of MBiO₂ (M=Na, Li, Ag) [33]. Bismuth element with two valences (Bi⁵⁺ and Bi³⁺) exists in the twisty octahedral (BiO₄) structure [34,35]. The excellent oxidizability is exhibited due to the empty 6s band of Bi5+ and the filled 6s band of Bi³⁺ [36]. As a kind of MBiO₃ material, AgBiO₂ not only has the outstanding properties above but also owns excellent visible light absorption performance and effective bacteriostatic ability. It has been successfully applied to the control of water blooms [37,38]. In this paper, a simple and fast growth method was employed to synthesize $AgBiO_3/g-C_3N_4$ photocatalytic materials. The physic-chemical properties of the synthesized AgBiO₃/g-C₃N₄ have been characterized. It exhibits an enhanced photocatalytic activity for the removal of BPA under visible light. Furthermore, the possible mechanism for the photodegradation process of AgBiO₂/g-C₂N₄ was speculated.

2. Experimental

2.1. Chemicals

Melamine and BPA were purchased from Sinopharm Chemical Reagent Company (Shanghai, China). Analytical grade silver nitrate, sodium hydroxide, sulfuric acid, sodium bismuthate, sodium chloride, absolute ethyl alcohol, p-benzoquinone, isopropanol, potassium iodide were obtained from Shanghai Chemical Reagent Company (Shanghai, China). Purified water (Wahaha Group Co., Ltd., Hangzhou, China) was used throughout the experiments. All chemicals were used without further purification.

2.2. Apparatus

Transmission electron microscopy (TEM, JEM-200CX microscope, JEOL, Tokyo, Japan), scanning electron microscope (SEM, Hitachi S-4800, Tokyo, Japan) and energy dispersive X-ray spectrometry (EDX, EX250, Horiba, Kyoto, Japan) were employed to observe the morphology and the structure of $g-C_3N_4$, AgBiO₃ and AgBiO₃/g-C₃N₄ nanomaterials. Fourier-transform infrared spectroscopy (FT-IR) was recorded on a TENSOR 27 spectrometer using a potassium bromide pellet (Bruker, Saarbrucken, Germany). The phase purity and crystallinity of the as-prepared materials were identified by X-ray powder diffraction (XRD)

patterns on a Rigaku XRD-6000 diffractometer with a Cu K α radiation (λ = 0.15406 nm) (Shimadzu, Kyoto, Japan). X-ray photoelectron spectroscopy (XPS) data was performed on an Escalab 250Xi instrument (Thermo, USA). The ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) was characterized with a Cary 5000 spectrophotometer in the 200~800 nm range and BaSO₄ was chosen as the reference (Varian, USA). Photoluminescence (PL) analysis was performed by a Cary Eclipse spectrophotometer (Varian, USA). The Brunauer–Emmett–Teller (BET) surface area test was performed on a TRISTAR-3000 surface area analyzer.

2.3. Preparation of the photocatalytic materials

2.3.1. Preparation of $g-C_3N_4$

The g-C₃N₄ nanosheets were synthesized by the pyrolysis method with minor modifications [39]. 20 g melamine was calcining in a muffle furnace at 520°C for 4 h under air atmosphere. The yellow solid obtained is g-C₃N₄.

2.3.2. Preparation of AgBiO₃

The AgBiO₃ was prepared by the ion-exchange method [33]. In brief, 2.8 g NaBiO₃ was dispersed in 100 mL of water with continuous stirring at 30°C for 60 min. Then, 100 mL 0.1 mol L⁻¹ AgNO₃ solution was slowly added into the mixture above. After keeping stirring for 24 h, the suspension was filtered and washed alternately with anhydrous ethanol and deionized water 2~3 times. AgBiO₃ was obtained after drying at low temperature for 6 h.

2.3.3. Preparation of AgBiO₃/g-C₃N₄ nanocomposites

The preparation process of AgBiO₃/g-C₃N₄ nanocomposites is similar to that of AgBiO₃. A certain amount of g-C₃N₄ and NaBiO₃ were dispersed in 60 mL mixed solvent ($V_{ethanol}$ · V_{water} = 1:2) with continuing ultrasonication for 30 min. Then, 0.1 mol L⁻¹ AgNO₃ solution was slowly added into the mixture above. After reaction for 24 h, the suspension was filtered and washed alternately with ethanol and deionized water 2~3 times. In the experiments, different mass percentages of AgBiO₃ (66%, 50% and 33%) in AgBiO₃/g-C₃N₄ composite materials were obtained by changing the dosing of g-C₃N₄ and they were labeled ABC-66, ABC-50 and ABC-33, respectively.

3. Results and discussion

3.1. Characterization of the prepared materials

3.1.1. Morphology analysis

Fig. 1a displays that single $g-C_3N_4$ has a lamellar structure, which is similar to Lan et al. [18]. In Fig. 1b, AgBiO₃ nanomaterial appears to own a spherical-like structure. Fig. 1c shows the prepared AgBiO₃ aggregated seriously. Fig. 1d–f exhibits AgBiO₃ is successfully loaded on the surface of $g-C_3N_4$. As shown in Fig. 1g, the lattice fringes of ABC-50 have a spacing of 0.23 nm, which is in accord with the spacing of the (202) planes of AgBiO₃. Fig. 1h reveals the elements C, N, O, Ag and Bi are all observed in the ABC-50.

Fig. 1. SEM images of $g-C_3N_4$ (a) and $AgBiO_3$ (b); TEM images of $AgBiO_3$ (c), ABC-66 (d), ABC-50 (e), ABC-33 (f); high-resolution transmission electron microscopy (HRTEM) of ABC-50 (g); EDX image of ABC-50 (h).

The mass ratio of the C element is slightly more than the theoretical value. It may result from the existence of CO_2 in the atmosphere.

3.1.2. FT-IR analysis

As shown in Fig. 2a, the peaks of 1,639 and 1,250 cm⁻¹ are attributed to the stretching vibration of C=N and C–N [39], respectively. The wide peaks at 3,100~3,400 cm⁻¹ correspond to the $-NH_2$ group [25]. The peak of 809 cm⁻¹ results from the breathing of the triazine units of g-C₃N₄ [40]. The characteristic peak at 446 cm⁻¹ is assign to the stretching vibration of Bi–O in AgBiO₃ (Fig. 2b) [41]. All the typical peaks of g-C₃N₄ and AgBiO₃ are contained in the binary ABC composites (Fig. 2c–e), which shows the successful preparation of the composite materials.

3.1.3. XRD analysis

XRD was used to analyze the crystal structures of $g-C_3N_{4'}$ AgBiO_{3'} and the synthesized ABC composite materials. In Fig. 3a, the intense peaks at 13.15° and 27.50° are corresponding to the (100) and (002) planes, respectively, which results from the characteristic inter-planar stacking of the aromatic systems [42]. Fig. 3b reveals the characteristic diffraction peaks of AgBiO₂ are at 21.8°, 31.7°, 46.8° and 56.7°, respectively. These peaks are indexed as the (012), (110), (116) and (300) crystal planes of AgBiO₃ in JCPDS Card No. 89-9072 [41]. Fig. 3c-e shows the XRD patterns of in ABC composite materials with different components. An obvious peak at 38.5° can be observed on the curves, which might be caused by a small amount of NaBiO₃ particles remaining in the prepared samples. All the diffraction peaks of g-C₃N₄ and AgBiO₃ can be seen in the composites, which exhibits the ABC nanocomposites are successfully synthesized.

3.1.4. XPS analysis

Transmitance / %

3400 cm⁻¹

4000

XPS was utilized to analyze the inner structure of ABC-50 nanomaterial. In the full scan spectrum (Fig. 4a),

 σ/cm^{-1}

2500

1639 cm⁻¹

2000

1500

809 cm⁻¹

500

1250 cm

1000

3100 cm

3000

a. g-C₃N₄ b. AgBiO₃ c. ABC-66

d. ABC-50 e, ABC-33

3500

the elements of C, N, O, Ag and Bi are contained in ABC-50 nanocomposite. In Fig. 4b, The C 1s peak at 284.3 eV is contributed to the C-C. The double peaks of 287.2 and 287.7 eV are assigned to C-(N)₃ [25]. N 1s spectrum (Fig. 4c) exhibits that the peak of 397.7 eV is ascribed to the bonds of C=N-C, and the peaks at 398.5 and 401.0 eV result from C-N-H and N-(C)₃ [43], which demonstrates the presence of $g-C_3N_4$ in ABC-50. As shown in Fig. 4d, the binding energy of O 1s owns three characteristic peaks at 529.4, 530.6 and 531.7 eV, indicating the existence of lattice oxygen, active oxygen or chemisorbed oxygen, and adsorbed oxygen, respectively [41,44-46]. Fig. 4e shows the spectrum of Ag 3d. The binding energies of Ag $3d_{_{5/2}}$ and Ag $3d_{_{3/2}}$ have the typical peaks at 365.6 and 371.6 eV, respectively, with ΔE = 6 eV, which verifies the existence of Ag^{+} in $AgBiO_3$ [36,38]. The double intense peaks at 161.7 and 156.4 eV result from the binding energies of Bi $4f_{5/4}$ and Bi $2p_{7D'}$ and which confirms the presence of Bi⁵⁺ [36].

3.1.5. DRS analysis

In fact, the bandgap ($E_{\rm g}$) of AgBiO₃ is a controversial issue. Yu et al. [37] reported AgBiO₃ owns the bandgap of 2.5 eV, while of AgBiO₃ is 0.8 eV by DFT calculations in Ma's research [47]. Light absorption performance of catalytic materials plays a crucial role in photocatalytic activities. In this work, the UV-vis DRS spectra of $g-C_3N_{4'}$ AgBiO₃ and ABC-50 nanocomposite are exhibited in Fig. 5a. The basic absorption edge of $g-C_3N_4$ is approximately 460 nm, while the prepared AgBiO₃ has the basic absorption edge at 570 nm. Compared with the two materials, the ABC-50 composite has obvious absorption smears in the range of 450~800 nm. It is reported both AgBiO₃ and $g-C_3N_4$ are indirect bandgap semiconductors [17,37]. The bandgaps of AgBiO₃ and $g-C_3N_4$ can be calculated based on the classic Tauc approach Eq. (1).

$$\alpha h \nu = A \left(h \nu - E_g \right)^{n/2} \tag{1}$$

Fig. 3. XRD patterns of g-C $_3N_4$ (a), AgBiO $_3$ (b), ABC-66 (c), ABC-50 (d) and ABC-33 (e).

Fig. 4. The overview (a) and the corresponding high-resolution XPS spectra C 1s (b), N 1s (c), O 1s (d), Ag 3d (e) and Bi 4f (f) of the as-prepared ABC-50 nanomaterial.

Fig. 5. DRS spectra of $g-C_3N_4$, AgBiO₃, and ABC-50 nanocomposite.

where *n* is 4 for indirect transition and *n* is 1 for direct transition. α , *h*, ν and *A* are the absorption coefficient, Planck constant, light frequency and a constant, respectively [48]. Fig. 5b manifests the E_g of g-C₃N₄ and AgBiO₃ are at 2.70 and 2.18 eV, respectively.

3.1.6. PL analysis

In order to study the generation and separation of photogenic carriers in the prepared materials, fluorescence intensity was measured at an excitation wavelength of 325 nm. g-C₃N₄ has a bandgap of 2.70 eV, which leads to a high probability of recombination between photogenic electrons and holes. As shown in Fig. 6, when AgBiO₃ is introduced onto the surface of g-C₃N₄, the fluorescence emission intensity generated by ABC-50 is significantly lower than that generated by g-C₃N₄, which greatly enhances the utilization efficiency of visible light.

3.1.7. BET analysis

In Fig. 7, the BET specific surface area and pore size distribution of the prepared materials were investigated by N_2 adsorption–desorption isotherm. The BET specific surface area of $g-C_3N_{4'}$ AgBiO₃ and ABC-50 are 7.7638, 14.5080 and 32.1338 m² g⁻¹, respectively. The pore diameter of ABC-50 is about 6.3–58.7 nm, which indicates ABC-50 nanomaterial is mesoporous. Larger surface area can provide more reaction sites, which is beneficial to the photocatalytic reaction process.

3.2. Photocatalytic degradation of BPA

3.2.1. Effect of the component ratio of $AgBiO_3/g-C_3N_4$ on the degradation of BPA

20 mg different photocatalytic materials were added into 50 mL 10 mg L⁻¹ BPA solutions, respectively. Fig. 8 exhibits both g-C₃N₄ and AgBiO₃ have low degradation efficiency on BPA under 180 min visible light irradiation. Compared

Fig. 6. PL spectra of $g-C_3N_4$ (a), AgBiO₃ (b) and ABC-50 (c).

with single catalysts, ABC nanocomposites display the obviously enhanced photocatalytic activity. When ABC-50 was used as the catalyst to degrade BPA, the removal efficiency can reach the highest. It results from the effective electrons migration from the ABC-50 nanocomposite. Hence, ABC-50 nanomaterial was used in the following experiments.

3.2.2. Effect of salinity on the degradation of BPA

As shown in Fig. 9, the removal efficiency of BPA decreases with the increase of NaCl concentration in the solution. When the dosage of NaCl was 0.9%, BPA degradation efficiency decreased to 67.20%. It may probably be concerned with the occupation of Na⁺ on the reactivity sites of the ABC-50 nanomaterial, which prohibits the BPA molecules from adsorbing onto the ABC-50 surface [49]. In addition, competitive adsorption among Cl⁻, OH⁻ and electrons would be formed on the surface of ABC-50.

Fig. 7. Nitrogen adsorption–desorption isotherm plots for $g-C_3N_4$, AgBiO₃ and ABC-50 with the pore size distribution of ABC-50 in the left-top inset.

Fig. 8. Effect of the component ratio on the degradation efficiency of BPA.

Kinetics studies have been shown in Fig. 10. The reaction obeys the pseudo-first-order kinetics owing to the linear relationship between $\ln(C_0/C)$ and reaction time [Eq. (2)].

$$\ln\left(\frac{C_0}{C}\right) = kt \tag{2}$$

where C_0 is the initial concentration of BPA (units: mg L⁻¹) and *C* is the concentration of BPA after the photocatalytic reaction (units: mg L⁻¹), *t* is the irradiation time (min), *k* is the reaction rate constant (min⁻¹).

3.3. Possible photocatalytic mechanism

In general, hydroxyl radical (•OH), holes (h^+) and superoxide ion radicals (O_2^-) are usually considered as oxidative active species, which have outstanding oxidation capacity [50–52]. In this experiment, 10 mmol L⁻¹ isopropanol, potassium iodide and p-benzoquinone were

Fig. 9. Effect of the salinity on the degradation efficiency of BPA.

Fig. 10. The first-order kinetics simulation diagram.

employed as scavengers for 'OH, h⁺ and 'O₂⁻, respectively. Fig. 11 reveals the rates constant of three photocatalytic degradation processes with corresponding scavengers (isopropanol 0.0049 min⁻¹, potassium iodide 0.00768 min⁻¹, p-benzoquinone 0.00324 min⁻¹) all show distinct decline trends than that without any scavenger (0.01653 min⁻¹). Obviously, 'OH, h⁺ and 'O₂⁻ have similar contributions on BPA degradation by ABC-50.

It is well-known that the $E_{\rm CB}$ values and $E_{\rm VB}$ values of g-C₃N₄ are at -1.13 and 1.57 eV, respectively [25,39]. However, the $E_{\rm CB}$ values and $E_{\rm VB}$ values of AgBiO₃ is still a debatable issue. In this paper, the potential flat-band position ($E_{\rm fb}$) of AgBiO₃ was measured by Mott–Schottky curve (Fig. 12). The positive slope of the Mott–Schottky curve indicates that AgBiO₃ is a typical *n*-type semiconductor. By the intersection point of the tangent line and *x*-axis, the flat band ($E_{\rm fb}$) potential of AgBiO₃ is 0.13 V vs. Ag/AgCI (equivalent to 0.33 V vs. NHE). It is generally believed the $E_{\rm CB}$ is positive than the $E_{\rm fb}$ by 0.1 V [53]. Hence, based on the estimated $E_{\rm g}$ value in Fig. 5, the $E_{\rm CB}$ of AgBiO₃ is calculated

Fig. 11. Effect of trapping agents on the degradation efficiency of BPA.

Fig. 12. Mott-Schottky curves of AgBiO₃.

Fig. 13. Schematic drawing of the photocatalytic degradation of the ABC-50 nanocomposite.

to be 0.23 V vs. NHE and the $E_{\rm VB}$ of AgBiO₃ is calculated to be 2.41 V.

According to the discussion above, a possible photocatalytic mechanism for ABC-50 binary nanocomposite can be predicted based on the energy band theory. Both the photo-induced electrons of $\text{g-C}_3\text{N}_4$ and AgBiO_3 could be excited from the VB to the corresponding CB under visible light irradiation. Because the CB potential of g-C₃N₄ is more negative than that of AgBiO₃, the electrons (e⁻) in the CB of g-C₃N₄ could be partially migrated to the CB of AgBiO_{3'} while the h⁺ can transfer from AgBiO₃ to $g-C_3N_4$ [17]. Some e⁻ in the CB of AgBiO₃ would recombine with the h^+ in the VB of g-C₃N₄ owing to the relatively short distance between the VB of $g-C_3N_4$ and the CB of AgBiO₃ [21]. Moreover, the electrons in g-C₃N₄ could react with dissolved O_2 to generate O_2^- because the \vec{E}_{CB} of g- C_3N_4 is more negative than the potential of O_2/O_2^- ($O_2/O_2^- = -0.33$ V vs. NHE) [50]. Then, O_2^- could react with H^+ to produce H_2O_2 ($O_2/$ $H_2O_2 = 0.69$ V vs. NHE) [29] and the H_2O_2 could further react with the e⁻ to form •OH. Since the \vec{E}_{VB}^{2} of AgBiO₃ is more positive than the potential of •OH/H₂O (•OH/H₂O = 2.37 V vs. NHE) [39], the h⁺ can directly oxidize the target organic pollutant or react with H₂O to generate 'OH [54].

Combined with the discussions above, the possible photocatalytic reaction mechanism and analog diagram are proposed as shown in Eqs (3)–(8) and Fig. 13.

$$ABC-50 + h\nu \rightarrow e^- + h^+ \tag{3}$$

$$O_2 + e^- \to {}^{\bullet}O_2^- \tag{4}$$

$$^{\bullet}\mathrm{O}_{2}^{-} + \mathrm{H}^{+} \to \mathrm{H}_{2}\mathrm{O}_{2} \tag{5}$$

$$H_2O_2 + e^- \rightarrow OH + OH^+$$
 (6)

$$h^+ + H_2 O \rightarrow OH$$
 (7)

$$^{\bullet}O_{2}^{-}/^{\bullet}OH/h^{+} + BPA \rightarrow CO_{2} + H_{2}O$$
(8)

4. Conclusion

In summary, the $AgBiO_3/g-C_3N_4$ nanocomposites were successfully synthesized with a combination of calcination and ion exchange methods. The structural characterizations spectra were obtained by TEM, SEM/EDS, XRD, FT-IR, XPS, DRS, PL and BET analysis. The prepared $AgBiO_3/g-C_3N_4$ composites were utilized to the degradation of BPA. The prepared ABC-50 nanomaterial (50 wt.% AgBiO₃ in AgBiO₃/g-C₃N₄) achieves the supreme photocatalytic activity with 95.75% degradation efficiency of BPA under 180 min visible-light irradiation. The photocatalytic reaction kinetics and the possible reaction mechanism were also speculated. The degradation process was verified to follow the pseudo-first-order kinetics. Active oxidizing species including $O_{2'}^-$ OH and h⁺ produced during the photocatalytic process all play important roles in the degradation of BPA.

Acknowledgments

This work was financially supported by The Central Public-interest Scientific Institution Basal Research Fund (grant no. GYZX200304).

References

- A. Bhatnagar, L. Anastopoulos, Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review, Chemosphere, 168 (2017) 885–902.
- [2] C.Y. Xiao, L.H. Wang, Q. Zhou, X.H. Huang, Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies, J. Hazard. Mater., 384 (2020) 121488–121500.
- [3] A. Tandon, S.J. Singh, M. Gupta, N. Singh, J. Shankar, N. Arjaria, S. Goyal, R.K. Chaturvedi, Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis, J. Hazard. Mater., 392 (2020) 122052–122074.
- [4] E.T. Mohammed, K.S. Hashem, A.E. Ahmed, M.T. Aly, L. Aleya, M.M. Abdel-Daim, Ginger extract ameliorates bisphenol A (BPA)-induced disruption in thyroid hormones synthesis and metabolism: involvement of Nrf-2/HO-1 pathway, Sci. Total Environ., 703 (2020) 134664–134674.
- [5] R. Bahmani, D.G. Kim, M. Modareszadeh, A.J. Thompson, J.H. Park, H.H. Yoo, S. Hwang, The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA), Environ. Pollut., 257 (2020) 113516–113528.
- [6] Y.W. Li, Q.W. Chai, J.M. Li, F. Liu, Y.Q. Wang, C.C. Zhao, Adsorption of bisphenol A (BPA) from aqueous solution onto mesoporous carbon and Fe-modified mesoporous carbon, Desal. Water Treat., 150 (2019) 237–251.
- [7] F.M. Mpatani, A.A. Aryee, A.N. Kani, Q.H. Guo, E. Dovi, L.B. Qu, Z.H. Li, R.P. Han, Uptake of micropollutant-bisphenol A, methylene blue and neutral red onto a novel bagasse-bcyclodextrin polymer by adsorption process, Chemosphere, 259 (2020) 127439–127451.
- [8] R. Das, G.Y. Li, B.X. Mai, T.C. An, Spore cells from BPA degrading bacteria *Bacillus* sp. GZB displaying high laccase activity and stability for BPA degradation, Sci. Total Environ., 640–641 (2018) 798–806.
- [9] J.K. Xiong, T.C. An, G.Y. Li, P.A. Peng, Accelerated biodegradation of BPA in water-sediment microcosms with *Bacillus* sp. GZB and the associated bacterial community structure, Chemosphere, 184 (2017) 120–126.
- [10] Y. Li, T. Yang, S.H. Qiu, W.Q. Lin, J.T. Yan, S.S. Fan, Q. Zhou, Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species, Chem. Eng. J., 389 (2020) 124382–124391.
- [11] P.J. He, Z. Zheng, H. Zhang, L.M. Shao, Q.Y. Tang, PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition, Sci. Total Environ., 407 (2009) 4928–4933.
- [12] Y.F. Li, M.H. Zhou, B. Cheng, Y. Shao, Recent advances in g-C₃N₄-based heterojunction photocatalysts, J. Mater. Sci. Technol., 56 (2020) 1–17.
- [13] S.K. Ray, J. Hur, Surface modifications, perspectives, and challenges of scheelite metal molybdate photocatalysts for

removal of organic pollutants in wastewater, Ceram. Int., 46 (2020) 20608–20622.

- [14] M. Pirhashemia, A.H. Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnObased visible-light-driven photocatalysts, J. Ind. Eng. Chem., 62 (2018) 1–25.
- [15] M.S. Gohari, A.H. Yangjeh, M, Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review, Crit. Rev. Env. Sci. Technol., 48 (2018) 806–857.
- [16] A. Akhundi, A.H. Yangjeh, M. Abitorabi, S.R. Pouran, Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitridebased photocatalysts, Catal. Rev. Sci. Eng., 61 (2019) 595–628.
- [17] N. Kumaresan, M.M.A. Sinthiya, M. Sarathbavan, K. Ramamurthi, K. Sethuraman, R.R. Babuc, Synergetic effect of g-C₃N₄/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation, Sep. Purif. Technol., 244 (2020) 116356–116366.
- [18] Y.L. Lan, Z.S. Li, D.H. Li, W.Y. Xie, G.X. Yan, S.H. Guo, Visible-light responsive Z-scheme Bi@β-Bi₂O₃/g-C₃N₄ heterojunction for efficient photocatalytic degradation of 2,3-dihydroxynaphthalene, Chem. Eng. J., 392 (2020) 123686–123696.
- [19] M.S. Nasir, G.R. Yang, I. Ayub, S.L. Wang, W. Yan, Tin diselinide a stable co-catalyst coupled with branched TiO₂ fiber and g-C₃N₄ quantum dots for photocatalytic hydrogen evolution, Appl. Catal., B, 270 (2020) 118900–118910.
- [20] A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production, Mol. Catal., 488 (2020) 110902–110915.
- [21] S.L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, V. Muthuraj, Construction of heterostructure CoWO₄/g-C₃N₄ nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation, J. Ind. Eng. Chem., 80 (2019) 558–567.
- [22] G.H. Liu, M.L. Liao, Z.H. Zhang, H.Y. Wang, D.H. Chen, Y.J. Feng, Enhanced photodegradation performance of Rhodamine B with g-C₃N₄ modified by carbon nanotubes, Sep. Purif. Technol., 244 (2020) 116618–116624.
- [23] E.V. Kermani, A.H. Yangjeh, S. Ghosh, Visible-light-induced nitrogen photofixation ability of g-C₃N₄ nanosheets decorated with MgO nanoparticles, J. Ind. Eng. Chem., 84 (2020) 185–195.
- [24] X.Y. Hu, X.K. Zeng, Y. Liu, J. Lu, S. Yuan, Y.C. Yin, J. Hu, D.T. McCarthy, X.W. Zhang, Nano-layer based 1T-rich MoS₂/ g-C₃N₄ co-catalyst system for enhanced photocatalytic and photoelectrochemical activity, Appl. Catal., B, 268 (2020) 118466–118474.
- [25] J. Mei, D.P. Zhang, N. Li, M.X. Zhang, X.Y. Gu, S.C. Miao, S.H. Cui, J. Yang, The synthesis of Ag₃PO₄/g-C₃N₄ nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation, J. Alloys Compd., 749 (2018) 715–723.
- [26] E.V. Kermani, A.H. Yangjeh, H.D. Khalilabad, S. Ghosh, Nitrogen photofixation ability of g-C₃N₄ nanosheets/Bi₂MoO₆ heterojunction photocatalyst under visible-light illumination, J. Colloid Interface Sci., 563 (2020) 81–91.
- [27] J.T. Cao, X.L. Fu, L.Z. Zhao, S.H. Ma, Y.M. Liu, Highly efficient resonance energy transfer in g-C₃N₄-Ag nanostructure: proof-ofconcept toward sensitive split-type electrochemiluminescence immunoassay, Sens. Actuators, B, 311 (2020) 127926–127932.
- [28] M.M. Wang, M.K. Zhang, J.L. Zhu, J. Wang, L.P. Hu, T.M. Sun, M. Wang, Y.F. Tang, g-C₃N₄/Co nanohybrids for ultrasensitive simultaneous detection of uric acid and dopamine, ChemElectroChem, 7 (2020) 1373–1377.
- [29] J.X. Huang, D.G. Li, Y. Liu, R.B. Li, P. Chen, H.J. Liu, W.Y. Lv, G.G. Liu, Y.P. Feng, Ultrathin Ag₂WO₄-coated P-doped g-C₃N₄ nanosheets with remarkable photocatalytic performance for indomethacin degradation, J. Hazard. Mater., 392 (2020) 122355–122367.

- [30] M. Ghashghaee, Z. Azizi, M. Ghambarian, Conductivity tuning of charged triazine and heptazine graphitic carbon nitride (g-C₃N₄) quantum dots via nonmetal (B, O, S, P) doping: DFT calculations, J. Phys. Chem. Solids, 141 (2020) 109422–109427.
- [31] N.N. Zhang, L. Wen, J.Y. Yan, Y. Liu, Dye-sensitized graphitic carbon nitride (g-C₃N₄) for photocatalysis: a brief review, Chem. Pap., 74 (2020) 389–406.
- [32] Y.H. Qi, J.X. Xu, M.J. Zhang, H.F. Lin, L. Wang, In situ metaleorganic framework-derived c-doped Ni₃S₄/Ni₂P hybrid co-catalysts for photocatalytic H₂ production over g-C₃N₄ via dye sensitization, Int. J. Hydrogen Energy, 44 (2019) 16336–16347.
- [33] J.Y. Gong, C.S. Lee, E.J. Kim, J.H. Kim, W. Lee, Y.S. Chang, Self-generation of reactive oxygen species on crystalline AgBiO₃ for the oxidative remediation of organic pollutants, ACS Appl. Mater. Interfaces, 9 (2017) 28426–28432.
- [34] R. Ramachandran, M. Sathiya, K. Ramesha, A.S. Prakash, G. Madras, A.K. Shukl, Photocatalytic properties of KBiO₃ and LiBiO₃ with tunnel structures, J. Chem. Sci., 123 (2011) 517–524.
- [35] T. Takei, R. Haramoto, Q. Dong, N. Kumada, Y. Yonesaki, N. Kinomura, T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Photocatalytic activities of various pentavalent bismuthates under visible light irradiation, J. Solid State Chem., 184 (2011) 2017–2022.
- [36] X.Y. Yue, X.L. Miao, X.P. Shen, Z.Y. Ji, H. Zhou, Y.M. Sun, K.Q. Xu, G.X. Zhu, L.R. Kong, Q.R. Chen, N. Li, X.M. He, Flower-like silver bismuthate supported on nitrogen-doped carbon dots modified graphene oxide sheets with excellent degradation activity for organic pollutants, J. Colloid Interface Sci., 540 (2019) 167–176.
- [37] X.J. Yu, J.Y. Zhou, Z.P. Wang, W.M. Cai, Preparation of visible light-responsive AgBiO₃ bactericide and its control effect on the *Microcystis aeruginosa*, J. Photochem. Photobiol., B, 101 (2010) 265–270.
- [38] B. Boruah, R. Gupta, J.M. Modak, G. Madras, Novel insights into the properties of AgBiO₃ photocatalyst and its application in immobilized state for 4-nitrophenol degradation and bacteria inactivation, J. Photochem. Photobiol., A, 373 (2019) 105–115.
- [39] D.P. Zhang, S.H. Cui, J. Yang, Preparation of Ag₂O/g-C₃N₄/ Fe₃O₄ composites and the application in the photocatalytic degradation of Rhodamine B under visible light, J. Alloys Compd., 708 (2017) 1141–1149.
- [40] X.J. Hou, L.X. Cui, H.W. Du, L.N. Gu, Z.J. Li, Y.P. Yuan, Lowering the schottky barrier of g-C₃N₄/Carbon graphite heterostructure by N-doping for increased photocatalytic hydrogen generation, Appl. Catal., B, 278 (2020) 119253–119259.
- [41] W.D. Wu, C. Xu, X.X. Shi, J. Zhao, X.X. An, H.W. Ma, Y.Y. Tian, H.F. Zhou, Effective degradation of organic pollutants and reaction mechanism with flower-like AgBiO₃/g-C₃N₄ composite, Colloids Surf., A, 599 (2020) 124901–124910.
- [42] H.P. Li, Z. Wang, Y.X. Lu, S. Liu, X.J. Chen, G.Y. Wei, G. Ye, J. Chen, Microplasma electrochemistry (MIPEC) methods for improving the photocatalytic performance of $g-C_3N_4$ in degradation of RhB, Appl. Surf. Sci., 531 (2020) 147307–147314.

- [43] A. Kumar, M. Khan, J.H. He, I.M.C. Lo, Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C₃N₄/TiO₂ heterojunction nanophotocatalyst for enhanced degradation of PPCPs, Appl. Catal., B, 270 (2020) 118898–118909.
- [44] V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach, J. Solid State Chem., 163 (2002) 100–112.
- [45] F.E. López-Suárez, A. Bueno-López, M.J. Illan-Gomez, A. Adamski, B. Ura, J. Trawczynski, Copper catalysts for soot oxidation: alumina versus perovskite supports, Environ. Sci. Technol., 42 (2008) 7670–7675.
- [46] K. Yu, S.G. Yang, S.A. Boyd, H.Z. Chen, C. Sun, Efficient degradation of organic dyes by BiAg_xO_y, J. Hazard. Mater., 197 (2011) 88–96.
- [47] Z.J. Ma, K.C. Wu, B.Z. Sun, C. He, Band engineering of AgSb_{1-x}Bi_xO₃ for photocatalytic water oxidation under visible light, J. Mater. Chem. A, 3 (2015) 8466–8474.
- [48] Q.Y. Rong, D.P. Zhang, Y. Li, Z.X. Zha, X.X. Geng, S.H. Cui, J. Yang, Synthesis of Bi₂MoO₂/Bi₂Ti₂O₂ Z-scheme heterojunction as efficient visible-light photocatalyst for the glycolic acid degradation, J. Nanosci. Nanotechnol., 19 (2019) 7635–7644.
- [49] H. Sudrajat, S. Babel, A new, cost-effective solar photoactive system N–ZnO@polyester fabric for degradation of recalcitrant compound in a continuous flow reactor, Mater. Res. Bull., 83 (2016) 369–378.
- [50] X.S. Zhao, Y.Y. You, S.B. Huang, Y.X. Wu, Y.Y. Ma, G. Zhang, Z.H. Zhang, Z-scheme photocatalytic production of hydrogen peroxide over Bi₄O₅Br₂/g-C₃N₄ heterostructure under visible light, Appl. Catal., B, 278 (2020) 119251–119261.
- [51] H. Zhang, G.G. Tang, X. Wan, J. Xu, H. Tang, High-efficiency allsolid-state Z-scheme Ag₃PO₄/g-C₃N₄/MoSe₂ photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination, Appl. Surf. Sci., 530 (2020) 147234–147243.
- [52] C.Y. Jin, M. Wang, Z.L. Li, J. Kang, Y. Zhao, J. Han, Z.M. Wu, Two dimensional Co₃O₄/g-C₃N₄ Z-scheme heterojunction: mechanism insight into enhanced peroxymonosulfatemediated visible light photocatalytic performance, Chem. Eng. J., 398 (2020) 125569–125582.
- [53] Y. Li, X.N. Zheng, J. Yang, Z.H. Zhao, S.H Cui, Enhanced photocatalytic degradation of 2,4,6-trichlorophenol and RhB with RhB-sensitized BiOClBr catalyst based on response surface methodology, J. Taiwan Inst. Chem. Eng., 119 (2021) 213–223.
- [54] M. Faisal, M. Jalalah, F.A. Harraz, A.M. El-Toni, A. Khan, Au nanoparticles-doped g-C₃N₄ nanocomposites for enhanced photocatalytic performance under visible light illumination, Ceram. Int., 46 (2020) 22090–22101.