
* Corresponding authors.

1944-3994/1944-3986 © 2021 Desalination Publications. All rights reserved.

Desalination and Water Treatment 
www.deswater.com

doi: 10.5004/dwt.2021.27355

227 (2021) 86–92
July

Prediction of ultrafiltration membrane fouling using statistical models in 
pilot and full-scale operations

Nayoung Parka, Hyungsoo Kima, Yongsoo Leeb, Yongjun Choic,*, Sangyoup Leea,*
aDepartment of Water Resources, Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, 
Suwon, Gyeonggi-do 440-746, Republic of Korea, Tel. +82-31-290-7542; Fax: +82-31-290-7549; email: sangyouplee@skku.edu 
bDepartment of Civil and Environmental, Engineering Graduate School of Hanyang University, 222, Wangsimni-ro,  
Seongdong-gu, Seoul, Republic of Korea 
cSchool of Civil and Environmental Engineering, Kookmin University, Jeongneung-Dong, Seongbuk-Gu, Seoul 136-702,  
Republic of Korea, Tel. +82-2-910-4529; Fax: +82-2-910-4939; email: choiyj1041@gmail.com

Received 4 January 2021; Accepted 1 April 2021

a b s t r a c t
Prediction of ultrafiltration membrane fouling using statistical models has been investigated. 
Statistical models employed in this study include artificial neural network (ANN), genetic 
programming (GP) and M5P tree model. Data obtained from pilot-scale (A plant) and full-scale 
(B plant) membrane plants were used for training and testing models. Fouling prediction by the 
classic Hermia model was also carried out for comparison with the statistical models. The Hermia 
model is used for simple estimating membrane fouling by data fitting but can provide information 
on the cause of membrane fouling according to the fitting trend. On the other hand, the statistical 
models can be used to predict the actual degree of membrane fouling rather than simple data fitting; 
however, these models do not provide information on the causes of membrane fouling. Therefore, 
complementary studies are possible by using these two types of models together. The ratio of the 
number of training and test data was varied to be 8:2, 6:4, 4:6, and 2:8 for prediction error control. 
As a result of applying the Hermia model, the ratio of training data to test data can be predicted 
up to around 8:2. Reliable predictions have been obtained up to the ratio of 4:6 in the ANN model, 
6:4 in the GP model and 4:6 in the M5P tree model. Except for the summer period where the cor-
rected trans-membrane pressure (TMP) at 25°C was unstable (in the full-scale plant B), the reli-
able prediction was obtained up to the ratio of 2:8 for the ANN model, 4:6 for the GP model and 
6:4 for the M5P model. It has been demonstrated that the statistical models can make acceptable 
fouling predictions despite a small number of training data in both the pilot-scale and full-scale 
plant. In addition, the time for membrane cleaning can be scheduled in advance as the models also 
predict the proper cleaning time in combination with fouling prediction.
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1. Introduction

As regulations on the quality of drinking water become 
even more strict, demands for obtaining safe water quality, 
and efforts to secure stable water resources, are increas-
ing. Various research on water purification processes, in 

order to secure more stable water quality, is in progress. 
In addition, the membrane filtration process, which is one 
of the current water treatment processes, is expanding in 
particulate matter and also in pathogenic microorganisms, 
such as Giardia and Cryptosporidium. The membrane fil-
tration process can obtain stable membrane filtration water 
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quality, regardless of raw water and turbidity changes, 
compared to the existing water treatment process. In addi-
tion, since only a small space is required, it is not limited by 
geographical features and has the advantage of easy main-
tenance. However, membrane filtration involves complex 
interactions among the membrane surface, processing con-
ditions, and effluents under treatment. These interactions 
can often affect each other, which results in a multifaceted 
effect on the surface of the membrane. This is known as 
the phenomenon of membrane fouling [1]. Therefore, in 
order to improve the stability and efficiency of operation 
in the water treatment process using a membrane, the 
most important consideration is to minimize all membrane 
fouling. Membrane fouling is a contaminant that occurs 
on the surface or the inside of the membrane. The fouling 
appears as contaminants, such as natural organic matter, 
colloidal and particulate matter, contained in raw water 
and separated by the membrane. Various studies are being 
conducted, such as identifying mechanisms for membrane 
fouling, and cleaning methods. In fact, there have been 
numerous studies on fouling at the lab scale, but relatively 
few studies have been conducted in the pilot-scale and 
full-scale system. The operation of the membrane filtration 
plant in the field compares the period of reaching the crit-
ical pressure to find data about the aging membrane or to 
perform clean-in-place (CIP) washing when known that the 
chemical cleaning efficiency is lower than before. However, 
this method creates problems such as decreased production 
efficiency, and also increased chemical cleaning costs.

Commonly, the ratio of training data to test data is the 
most common and accurate for 80% of training data and 20% 
of test data. Notably, reducing the ratio of training data does 
not significantly reduce accuracy. Therefore, in this study, 
after dividing the data by the CIP period, the training data 
and the test data were set at a ratio of 8:2, 6:4, 4:6, and 2:8, 
and presented as the ratio of the training data to the test data 
from these results of the minimal predictable level.

It can be expected to find the minimum number of 
data required to predict the CIP washing time.

2. Theory

2.1. Mathematical model

This blocking filtration model is mainly used to study 
porous membrane filtration contaminants of microorgan-
isms, proteins, and natural organic matter as well as natural 
water and wastewater [2]. The blocking model equation for 
constant flow filtration can be obtained according to a proce-
dure similar to that used for static pressure filtration [3]. The 
three membrane fouling models applied to the constant flow 
filtration system are as follows: the pore blocking, the pore 
constriction, and the cake formation models (see Table 1).

2.2. Artificial neural network model

The objective of a neural network is to compute output 
values from input values by internal calculations. Neurons 
are processing elements that carry out simple computations 
from a vector of input values. Neural networks are orga-
nized in several layers. Each layer is fully connected to the 

next one. Inputs are represented by χ1, χ2, and χi and the 
output is represented by yj. A parameter ω (called weight) 
is associated with each connection between two cells or 
neurons [4]. Every input is multiplied by its correspond-
ing weight, and the node uses the summation of these 
weighted inputs (ωij × χi). Next, the weighted inputs are 
added to a threshold value (θj) [5]. The processes mentioned 
above can be described by the following equation:
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In most cases, an artificial neural network (ANNs) is an 
adaptive system that changes its structure based on the exter-
nal or internal information which flows through the network 

Table 1
Fouling mechanism in Hermia model

Fouling type Equation Constant 
parameter

Pore blocking 1
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Note: P: transmembrane pressure; P0: initial transmembrane pres-
sure; t: operating time; α: pore blocking model parameter; β: pore 
constriction model parameter; γ: cake formation model parameter.

Table 2
Membrane specification in A pilot plant

Item Content

Company Hyosung
Membrane type UF
Module type Hollow fiber
Material PVDF
Pore size 0.03 µm
Surface area 72 m2

Table 3
Membrane specification in B full-scale plant

Item Content

Company Toray Industries
Membrane type UF
Module type Hollow fiber
Material PVDF
Pore size 0.01 µm
Surface area 72 m2
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during the learning phase [6]. Also, this method does not 
need an explicit formulation of the physical relationship 
of the problem but does need to include available theoreti-
cal or empirical knowledge of the physics process [4].

2.3. Genetic programming model

The fundamental idea is that of emulating the 
Darwinian theory of evolution, where a population is pro-
gressively improved by selectively discarding the not-so-fit 
population, and then breeding new children from better 
populations [7]. The chromosomes in the genetic program-
ming (GP) are represented in a hierarchical structure in the 
population. The representation of GP can be viewed as a 
tree-based structure composed of the function set and the 
terminal set. The function set is the operators, functions, 
or statements such as arithmetic operators ({+, −, ×, /}) or 
conditional statements (“If”, “then”), which are available in 
the GP. The terminal set contains all inputs, constants, and 
other zero-arguments in the GP tree. Also, there are three 
main operators such as crossover, mutation, and repro-
duction, to show the procedures that help determine the 
(approximate) optimal generation. The operators are able to 
automatically discover any computer programming, math-
ematical functions, etc. [8].

2.4. M5P tree model

A model tree is used for numeric prediction, and at each 
leaf, it stores a linear regression model which predicts the tar-
get results [9]. It relates the observed inputs to the observed/
estimated outputs by the process of deduction learning, 
which is applicable to categorical and numerical input–out-
puts. Model trees, though simple, are efficient and accurate 
tools for modeling the patterns and relationships for large 
datasets [10]. The M5P model specifically proceeds in the fol-
lowing three stages: construction, pruning, and smoothing.

In determining which attribute is the best for splitting the 
portion T of the training data that reaches a particular node, 
the splitting criterion is used. When splitting the branches, 
all criteria is based on standard deviation reduction. 
Furthermore, the attribute chosen for splitting maximizes the 
expected error reduction at that node [9]. This is represented 
in the following equation:

SDR sd sd� � � � � � �T
T
T
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3. Materials and methods

3.1. Membrane and experimental equipment

This study conducts the process configuration and oper-
ation method of each plant. The A pilot plant is a membrane 
pressurized operation system with a capacity of 2,000 m3/d 
and is a simple process involving a sedimentation–filtration 
method that operates using an ultrafiltration (UF) mem-
brane: 25 min filtration, and 2 min and 30 s backwashing 
(see Fig. 1). Also, the polyvinylidene fluoride (PVDF) hol-
low fiber microfiltration membrane (Hyosung Inc., Korea) 
was used (see Table 2). The B full-scale plant is a membrane 

pressurized operation system with a capacity of 8,000 m3/d. 
It operates with a coagulation–flocculation–sedimentation 
UF membrane, and a total of 104 modules (26 modules/unit) 
are applied to the four arrays: at 35 min filtration and 1 min 
backwashing (see Fig. 2). The PVDF hollow fiber micro-
filtration membrane (Toray Industries, Inc., Japan) was 
used for the B full-scale plant (see Table 3).

3.2. Analysis methods

The database was built based on a series of experiments 
under different raw water compositions and operating 
conditions. A total number of 407 datasets of the A pilot 
plant, and 16,000 datasets of B full-scale plant, were con-
verted for daily and hourly data use. In this study, based on 
the coefficient of determination (R2), the root mean square 
error (RMSE) was used to find out the applicability of the 
Hermia model, the ANN model, the GP model, and the M5P 
model. Also, a 95% confidence level was used, based on the 
model with the highest R2 value, in order to find the accept-
able level. Finally, according to the number of data, the 
ratio of training data and test data was set to 8:2, 6:4, 4:6, 2:8.

4. Result and discussion

4.1. Raw water quality

Turbidity and temperature were investigated to deter-
mine any change in water quality characteristics according to 
the season of a river or lake. Figs. 3 and 4 are the raw water 
temperature and turbidity of plant A and plant B, respec-
tively. Temperature and turbidity were used to show the 
quality of the raw water. The temperature and turbidity of the 
raw water of pilot plant A ranged from 5.68–114.23 NTU. The 
turbidity and temperature of the raw water of pilot plant B 
were 0.88–67.10 NTU. Also, the B plant had a raw water tem-
perature of 2.49°C–31.78°C and 5.09°C–29.68°C, respectively.

Fig. 1. Schematic diagram of A pilot plant system.

Fig. 2. Schematic diagram of B full-scale system.
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4.2. Operating condition

Pilot plant A used data from May 2018 to October 2019 
and operates a total of two CIP washing times. After the first 
CIP washing, the operation was conducted for 220 d, after 
stopping the operation for 3 months due to a machine failure. 
In addition, the full-scale plant B used the first array of data 
from January 2018 to December 2019. Cleaning enhanced 
backwashing (CEB) washing was performed on a monthly 
basis, and CEB washing was performed at the CIP washing 
level. In Fig. 5, TMP changes during the period of data col-
lection for the pilot plant A (left) and the full-scale plant B 
(right) are shown.

4.3. Model prediction of the data using the Hermia model

The Hermia model (pore blocking, pore constriction, 
and cake formation) was applied in order to find the fouling 

mechanism. As a result of analyzing the main fouling mech-
anism, the cake formation model became the main mech-
anism. According to Table 4 and Fig. 6, it can be seen that 
when the ratio of training data and test data is 8:2, the 
R2 value is relatively high (from 0.9001, 0.8385, 0.8168). 
However, if it is at 6:4, 4:6, 2:8, the predicted value is sig-
nificantly lowered. This means that as the number of input 
data decreases, the predicted value decreases. The Hermia 
model shows that TMP increases with time. Therefore, it 
may be difficult to predict the application to a pilot plant 
or a full-scale plant of unstable data. For that reason, 
the result of plant B was omitted.

4.4. Model prediction of the data using the ANN model

The ANN model was created using MATLAB software. 
Tables 5 and 6, Figs. 7 and 8 are the R2 value and RMSE, 
according to the input data ratio by applying the ANN 

Fig. 5. TMP changes in A pilot plant, B full-scale plant.

Fig. 3. Characteristic of raw water in A pilot plant (a) turbidity and (b) temperature.

Fig. 4. Characteristic of raw water in B full-scale plant (a) turbidity and (b) temperature.
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model. Except for period 1 which is the initial operation, 
the pilot plant A, 4:6 (highest R2 value = 0.9805), is the range 
that can be predicted up to the ratio. Also, in the full-scale 
plant B, it is shown that the TMP25 can be predicted up to 
2:8 (highest R2 value = 0.9953), excluding period 2 when the 
rapid increase occurs.

4.5. Model prediction data using the GP model

The GP model was created using the GP dot Net v5 
software. Tables 7 and 8, Figs. 9 and 10 show the R2 value 
and RMSE, according to the input data ratio by apply-
ing the GP model. Except for period 1, an acceptable level 
for predicting an acceptable is up to the 6:4 (highest R2 
value = 0.9686) ratio in the pilot plant A. In the full-scale 
plant B, it can be found that the TMP25 is predicted up to 4:6 
(highest R2 value = 0.9413), excluding period 2.

4.6. Model prediction of the data using the M5P model

The M5P tree model was applied using WEKA 3.8.4. 
software. Tables 9 and 10, Figs. 11 and 12 show that the 
R2 value and RMSE can be found, along with the input 

Table 4
Cake formation model in A pilot plant

2:8 4:6 6:4 8:2

Period 1
γ 0.2845 0.1982 0.1034 0.0672
R2 0.4468 0.6231 0.7187 0.8168

Period 2
γ 0.2329 0.1325 0.2003 0.0546
R2 0.5378 0.6631 0.7627 0.8385

Period 3
γ 0.2243 0.1209 0.1290 0.0705
R2 0.5513 0.6713 0.8432 0.9001

Table 5
ANN model in A pilot plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.0377 0.0634 0.0037 0.2132
R2 0.9379 0.8267 0.8166 0.3274

Period 2
RMSE 0.0229 0.0230 0.0241 0.0420
R2 0.9864 0.9860 0.9850 0.9059

Period 3
RMSE 0.0139 0.0310 0.0474 0.1948
R2 0.9974 0.9876 0.9701 0.7380

Table 6
ANN model in B full-scale plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.0109 0.0125 0.0136 0.0160
R2 0.9973 0.9966 0.9959 0.9943

Period 2
RMSE 0.0143 0.0161 0.0232 0.0340
R2 0.9960 0.9949 0.9907 0.9809

Period 3
RMSE 0.0140 0.0156 0.0175 0.0209
R2 0.9965 0.9959 0.9947 0.9941

Period 4
RMSE 0.0084 0.0111 0.0145 0.0160
R2 0.9987 0.9978 0.9962 0.9953

Fig. 6. Cake formation in A pilot plant.

Fig. 8. ANN model in B full-scale plant

Fig. 7. ANN model in A pilot plant.
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data ratio, by applying the M5P tree model. Except for 
period 1, the prediction level is up to the 4:6 (highest R2 
value = 0.9658) ratio in pilot plant A. In the full-scale plant 
B, it was observed that the TMP25 is predicted up to 6:4 
(highest R2 value = 0.9657), excluding period 2.

5. Conclusion

In current studies, the fitting and prediction concepts 
are mixed along with studies conducted at the lab scale. 
The fitting is a method of showing how reliable the model 
is itself, by extracting and fitting some data from other 
data. Therefore, fitting does not mean prediction. The 
Hermia model (pore blocking, pore constriction, and cake 
formation) was applied in order to find the main fouling 
mechanism. For pilot plant A, the highest level is the cake 

Table 7
GP model in A pilot plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.1402 0.1959 0.1986 0.2089
R2 0.7631 0.7253 0.6697 0.5732

Period 2
RMSE 0.0541 0.0771 0.1120 0.2026
R2 0.9294 0.9134 0.8580 0.4265

Period 3
RMSE 0.4818 0.0866 0.1169 0.2311
R2 0.9747 0.9686 0.8771 0.6426

Table 8
GP model in B full-scale plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.0525 0.0972 0.1877 0.1379
R2 0.9394 0.9183 0.8955 0.8214

Period 2
RMSE 0.0354 0.1357 0.1771 0.2301
R2 0.9895 0.9369 0.8454 0.8449

Period 3
RMSE 0.0292 0.0874 0.1300 0.4655
R2 0.9972 0.9964 0.9030 0.8598

Period 4
RMSE 0.0181 0.0330 0.1847 0.1108
R2 0.9953 0.9867 0.9413 0.8155

Fig. 11. M5P model in A pilot plant.

Fig. 9. GP model in A pilot plant.

Fig. 10. GP model in B full-scale plant.

Table 9
M5P model in A pilot plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.0749 0.1185 0.1925 0.4549
R2 0.7353 0.6872 0.6836 0.6525

Period 2
RMSE 0.121 0.0544 0.1810 0.4223
R2 0.9673 0.9638 0.9532 0.8988

Period 3
RMSE 0.0889 0.0069 0.1400 0.4521
R2 0.9751 0.9689 0.9658 0.8995

Table 10
M5P model in B full-scale plant

8:2 6:4 4:6 2:8

Period 1
RMSE 0.0845 0.0580 0.2065 0.2386
R2 0.9559 0.9442 0.8278 0.7745

Period 2
RMSE 0.0907 0.1382 0.2233 0.2872
R2 0.9418 0.8903 0.8755 0.8358

Period 3
RMSE 0.0481 0.1051 0.1627 0.2560
R2 0.9870 0.9657 0.9338 0.9066

Period 4
RMSE 0.0394 0.1147 0.2113 0.2904
R2 0.9915 0.9657 0.9211 0.8094
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formation model. In the case of the B full-scale plant, the 
highest level is the pore-blocking model. Mathematical and 
statistical models were used to predict membrane fouling 
and chemical periods using the pilot plant and full-scale 
data in this study. Predicting, defined as a method of divid-
ing the data according to the chemical washing period, is 
also used in this study. To investigate the applicability of 
the Hermia model, the ANN model, the GP model, and the 
M5P model, the ratio of the training data to the test data 
was set to 8:2, 6:4, 4:6, and 2:8, according to the data num-
ber. The results show the application of the (cake forma-
tion) to the plant A data. It found that the R2 value is rel-
atively high when the ratio of the training data to the test 
data is 8:2. It gets considerably lower at 6:4, 4:6, and 2:8. 
This means that as the number of input data decreases, the 
predicted value decreases. The Hermia model is based on 
TMP that increases with time. It may be difficult to pre-
dict the application for a pilot plant or a full-scale plant 
with unstable data. Plant A is 4:6 for the ANN model, 6:4 
for the GP model, and 4:6 except for period 1, which is the 
initial operation. In the case of plant B, except for period 
2 (where the correct TMP at 25°C is unstable because it is 
summer), the ratio is 2:8 for the ANN model, 4:6 for the 
GP model. And for the M5P model, a range can be pre-
dicted up to a ratio of 6:4. Therefore, the main mechanism 
is the cake formation model, and with the Hermia model, 
TMP increases with time. So, it may be difficult to pre-
dict the application for a pilot plant or a full-scale plant 
with unstable data. The ANN model, the GP model, and 
the M5P model have the potential to predict the washing 
period of the membrane with a limited number of train-
ing data in the pilot plant or full-scale plant We concluded 

that the ANN model was the most ideal on account of its 
characteristics. The ANN model is based on human neu-
ral networks and is known to be effective in analyzing 
and predicting time series data. Also, it has a higher pre-
diction accuracy than regression models such as GP, M5P 
models. It will also be possible to realize the operating con-
ditions of the water treatment plant in advance, as it can 
predict the time of the next chemical washing.
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