Synthesis of silver nanoparticles using *Pongamia pinnata* leaf extract for efficient removal of acid Brilliant Red 3BN dye under solar irradiation

R. Sukanya Devi*, Bhaarathi Dhurai

Department of Textile Technology, Kumaraguru College of Technology, Coimbatore, India, Tel.: +91 422 2661160; emails: sukanyadevi.r.txt@kct.ac.in (R. Sukanya Devi), bhaarathidhurai.txt@kct.ac.in (B. Dhurai)

Received 9 September 2023; Accepted 20 November 2023

Abstract

The degradation of dye in effluent from textile industries is a vital area of research for mitigating the effects of the dyestuff on the ecosystem. In this study, silver nanoparticles were synthesized using a green approach using *Pongamia pinnata* leaf extract as a natural reducing and capping agent. The leaf extract and synthesized silver nanoparticles (AgNPs) were characterized for identifying the active functional groups and UV absorbance. Further, the surface morphology, particle-size distribution, and elemental analysis of the silver nanoparticle were characterized. The photocatalytic studies of the synthesized AgNPs were done for acid dye – acid Brilliant Red 3BN under solar irradiation. The process variables like the dye concentration, contact time, catalyst concentration, and pH were analyzed by one factor at a time approach. The formation of silver nanoparticles from silver nitrate by *P. pinnata* leaf extract was evident at 432 nm. The average particle size was found to be 50 nm and the shape of the silver nanoparticle was spherical. The elemental analysis confirms the presence of silver nanoparticles. The optimum factors are 5 ppm of dye concentration, and 10 mg/L catalyst concentration with a reaction time of 2 h at pH 4 for achieving photocatalytic degradation of 74% of acid Brilliant Red 3BN dye. The kinetic studies reveal that the reaction showed a good fit for the first-order kinetics with a rate constant of 0.00577 min⁻¹ with *R*² value of 0.97629. This study confirms the green synthesis of silver nanoparticles and its effective degradation of acid Brilliant Red 3BN dye.

Keywords: *Pongamia pinnata*; Silver nanoparticle; Acid dyes; Photocatalysis; Solar irradiation; Green synthesis

1. Introduction

Water is an essential resource for all living beings. Consumption of fresh water for human needs has been increasing by 1% per year amounting to a six-fold increase in the past 100 years [1]. The quality of available freshwater is affected by industrial activities, agricultural production, and improper urban usage that lead to pollution in water bodies which results in a threat to living beings [2]. There is a rapid increase in the release of various contaminants into water bodies by industries such as textiles, cosmetics, leather, plastics, etc [3]. In particular, the textile and fashion industry contributes, to 2% of the world's total gross domestic product. It is observed from the past two decades that the consumption of textiles per person has increased from 7 to 13 kg, thereby producing 100 million tons of textiles [4]. Chemical processing is an essential step in the manufacturing of textiles. Apart from chemicals used in the process, synthetic dyes are utilized for imparting color to the textiles. Synthetic dyes contain different types of chromophores, among which the azo group (–N=N–) tops the list. The removal of dyes from wastewater is difficult as most of the dyes are non-biodegradable. Destruction of the azo bond in the wastewater is essential for rendering the water harmless for further use [5].
Several treatment methods such as adsorption using low-cost adsorbents, chemical methods like the Fenton process, ozonation, electrocoagulation, and membrane technologies like ultrafiltration, reverse osmosis, etc., are adopted to treat the wastewater discharged from the textile wet processing industry [6]. Although various technologies are established for the treatment of wastewater, the implementation of the methods in the industry on a large scale is a challenge for obtaining maximum efficiency at low operational cost. To meet the demands of the current wastewater treatment challenges, the development of new effective techniques is required [7]. Out of the new emerging technologies, nano-hybrid technology is a promising technique for treating wastewater, and the nanomaterials are used as catalysts in the treatment [8,9]. Photocatalysis is a promising treatment method that uses light sources (usually in UV and visible range bands) and catalysts that liberate reactive oxygen species in the presence of light. The difference in oxidation potential between the reactive oxygen species and the dye leads to a gain or loss of electrons, thereby degrading the dyes. Metal or metal oxide catalysts are generally studied for their photocatalytic properties.

Nanoparticles are an emerging field because of their enhanced catalytic activity. Silver nanoparticles (AgNPs) have gained importance due to their wide application in photonics, photocatalysis, antibacterial applications, etc. [10]. Green synthesis is a potential alternative to chemical synthesis. Compounds from the natural origin are extensively studied for reducing and/or stabilizing the conversion of silver to silver nanoparticles [11,12]. Compounds used for the synthesis of AgNPs are extracted from microbes like fungi, bacteria, yeast and algae or from any part of plant extracts that are environment friendly and safe [13]. Synthesis of AgNPs was explored using a variety of plants like the Acorus calamus, leaves of Azadirachta indica, Alternanthera dentata, Ocimum sanctum, Aloe barbadensis Mill., Brassica rapa, Syzygium cumini, Coccinia indica, and Morus by previous researchers [14–18]. A wide range of phytochemicals available in plant extracts that have the potential to reduce and stabilize the metal salt into metallic nanoparticles [19–23]. The conditions maintained during green synthesis are responsible for the size and shape of synthesized AgNPs. These factors greatly influence the dye degradation activity of the photocatalyst [24,25].

Pongamia pinnata, a tree species in the pea family, is a native of the eastern and tropical Asia, Australia and the Pacific islands. It is commonly called as Indian beech and Pongame oil tree. The trees are found in surplus in India and native of the eastern and tropical Asia, Australia and the Pacific islands. It is commonly called as Indian beech and Pongame oil tree. The trees are found in surplus in India and native of the eastern and tropical Asia, Australia and the Pacific islands. It is commonly called as Indian beech and Pongame oil tree.

The present study uses a green approach of synthesizing silver nanoparticles using P. pinnata leaf which is an abundant resource. The leaves are collected and incinerated or left for natural biodegradation. The study reveals that the leaf extract can act as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized for their shape, size, elemental analysis, functional groups, absorbance value and crystal size. Most of the photocatalytic studies using AgNPs were carried out for the degradation of cationic dyes. But in this study, Colomill Brilliant Red 3BN, an anionic dye that is widely used by the silk and nylon dyeing industry is considered for the study. The photocatalytic degradation of the dyes was carried out under solar irradiation, by varying the dye concentration, catalyst concentration, time, and pH. The novelty of this study is the usage of abundantly available P. pinnata leaf and widely used acid dye for degradation studies.

2. Materials and method

2.1. Materials

Silver nitrate (AgNO₃) of (99.99%) purity was purchased from Sigma-Aldrich, India. P. pinnata leaves were collected from Coimbatore, Tamil Nadu, India. Colomill Brilliant Red 3BN (C.I. Acid Red 131) synthetic dye was purchased from Colortex, Surat. The selected dye was an azo dyestuff classified under acid dye bearing the chemical name disodium 5-(benzoylamino)-4-hydroxy-3-[[2-(2-methylphenox y)phenyl]azol]naphthalene-2,7-disulphonate with the chemical formula of C₃₅H₂₃N₂O₃S₂Na₂. The dye molecules have a net negative charge. Ethanol (C₂H₅OH) was used for sterilization. Deionized water was used for preparing all the solutions. The chemicals were used without any purification in the experiments.

2.2. Extraction of P. pinnata leaf extract

P. pinnata leaves were collected locally and washed with distilled water. The leaves were shredded and sterilized with ethanol. 50 g of leaves were taken in 500 mL of double distilled water in an Erlenmeyer flask and boiled at 90°C for 2 h and cooled to room temperature. The colour of the extract was pale yellow and the extract was filtered using a Whatman filter paper No.1 and stored at room temperature for further use.

2.3. Synthesis of silver nanoparticles

10 mL of aqueous solution of 0.1 M silver nitrate was prepared with distilled water. This aqueous silver nitrate solution was added to 10 mL of Pongamia pinnata leaf extract (PPLE) dropwise with a constant stirring at 350 rpm at room temperature. Due to the addition of the polyphenol and flavonoid rich leaf extract, the silver ions reduced to zero valent silver nanoparticles. The conversion was evidently observed by the change in colour of the solution from pale yellow to dark brown. The reaction continued for 1 h until a stable dark brown solution was obtained. Further, the obtained silver nanoparticles were centrifuged at 13,000 rpm for 5 min at room temperature. After decanting the supernatant, the silver nanoparticles precipitate was washed in deionized water several times. Thus, the obtained silver nanoparticles were suspended in deionized water for characterization and experimentation.
2.4. Preparation of synthetic dye effluent

The dye effluent used in this study was simulated by adding 1 g of Colomill Brilliant Red 3BN to 1 L of deionized water and homogenized at 60°C to form the stock solution. Different concentrations of dye effluent were prepared from the stock solution. The maximum absorbance wavelength of this synthetic dye effluent, to measure the concentration, was tested using UV-Visible spectrophotometer.

2.5. Characterization of silver nanoparticle

The morphological analysis of AgNPs was done using a field emission scanning electron microscope (FE-SEM) of Carl Zeiss (USA), Sigma model with Gemini column. Elemental analysis was done using the Nano Xflash Detector from Bruker, Germany. The particle arrangement of AgNPs in the crystal lattice was studied using X-ray diffraction (XRD) patterns obtained from the X’Pert Powder X-ray Diffractometer from Malvern Panalytical (USA). The functional groups present in the plant extract were studied using a Fourier-transform infrared (FTIR) spectrophotometer from Shimadzu, Japan. The absorbance value of the AgNPs was estimated using a double-beam UV-Visible spectrophotometer, Thermo Scientific (Thermo Fisher, USA).

2.6. Photocatalytic studies

The dye removal efficiency by photocatalytic reactions was optimized using the OFAT (one-factor-at-a-time) approach. The factors considered were the initial dye concentration, photocatalyst concentration, pH, and time. In OFAT, one factor was varied while the other factors remained unchanged. The synthetic dye with silver nanoparticles was exposed to solar irradiation. The strength of the solar irradiation when monitored by a Luxmeter (Lutron Instruments LX-101A Light Meter, was observed as 70,000 to 90,000 lux during the mid-day. It is approximately 530 to 710 Watts/m². The treated samples were centrifuged at 10,000 rpm for 10 min to remove AgNPs. The absorption of the samples was measured in a wavelength range of 200–800 nm.

The concentration of the dye was derived from the absorbance values based on Beer–Lamberts law which implies that the quantity of light absorbed by a dye dissolved in water is directly proportional to the concentration of the dye and the path length of the light through the solution. It is mathematically represented in Eq. (1):

\[A = \varepsilon c b \]

where \(\varepsilon \) is the molar absorptivity, \(b \) is the path length of light through the solution, and \(c \) is the concentration of the dye.

Similarly, the dye degradation \% was calculated using Eq. (2):

\[\text{Dye degradation} \% = \left(\frac{C_i - C_f}{C_i} \right) \times 100 \]

where \(C_i \) is the initial concentration of the dye solution, \(C_f \) is the final concentration of the dye solution.

The mathematical modeling for isotherm and kinetics was analyzed to calculate the maximum degradation capacity. The goodness of the fit was evaluated by \(R^2 \) value.

3. Results and discussion

3.1. Characterization of P. pinnata leaf extract

The PPLE was pale yellow in colour. The addition of the leaf extract to the silver nitrate solution changed the colourless liquid to brown colour as shown in Fig. 1. The colourless silver nitrate solution is shown in 1a, the P. pinnata leaf extract is shown in Fig. 1b and the reduced brown colour silver nanoparticle is in Fig. 1c. This change in colour due to the excitation of valence electrons in the silver nanoparticle caused surface plasmon resonance and was the indication of the reduction of the silver Ag⁺ to AgNPs [27]. This reduction of silver nitrate to AgNPs was evident from the UV absorbance curve of PPLE and AgNPs synthesized, where a peak was noted at 432 nm due to the surface plasmon resonance as indicated in Fig. 2. It is suggestive that the polyphenols present in anthocyanin, a flavonoid pigment in P. pinnata leaf is responsible for the conversion of Ag⁺ to AgNPs as it acts as a reducing agent for metallic ions and stabilising the nanoparticles [28,29].

Fig. 1. (a) Silver nitrate solution, (b) Pongamia pinnata leaf extract, and (c) silver nanoparticle.
3.2. Characterization of silver nanoparticle

3.2.1. Scanning electron microscope and particle size analysis

The FE-SEM micrographs of the AgNPs at 200 nm scale are shown in Fig. 3a. The micrographs show that the AgNPs were almost spherical. No agglomeration of particles was observed. The individual particles could be distinguished thereby confirming that PPLE acts both as a reducing and capping agent. On analysis of particle-size distribution using Image J software, as shown in Fig. 3b, the particles ranged in size from 30 to 100 nm, with the maximum number of particles having the size of 50 nm.

3.2.2. Elemental analysis

In order to confirm the presence of AgNPs, elemental analysis measurement was done. The spectrum in Fig. 4 confirms the presence of AgNPs at 3.0 keV. Similar works [26–28,30] confirmed that the peak of optical absorption occurring around 3 keV was due to the absorption of metallic AgNPs as a result of surface plasmon resonance. The spectrum at 0.2 and 0.6 confirmed carbon and oxygen (O) respectively and this may be due to the presence of organic residues of PPLE.

3.2.3. FTIR spectrum

The FTIR spectrum was analysed to ascertain the functional groups present in the PPLE and AgNPs. Fig. 5 represents the spectrum showing the functional groups of the phytochemicals present in PPLE were responsible for the reduction and stability of Ag⁺ to AgNPs. The P. pin-nata leaf consists of the pongaflavanol, galactoside, pongamol, tunicatachalcone and glybanchalcone [31]. The spectrum showed that silver ions bound with hydroxyl groups and this was visible in a broad band between 3,500 and 3,000 cm⁻¹. Peak observed around 1,650 cm⁻¹ corresponded to N–H bending of primary amines. C–O functional groups of tannins bound on the surface of the AgNPs. The intensity of the peak between 1,200 and 1,000 cm⁻¹ corresponded to the C–O groups of polyphenols such as flavonoids, was reduced in the AgNPs spectrum since the polyphenols were responsible for the reduction of Ag⁺ to AgNPs. [32,33].

A tentative mechanism of reduction and capping of silver nanoparticles can be found in Fig. 6. The flavonoids which have comparatively less bond disassociation energy than the phenolic compounds, containing two hydroxyl groups –OH facilitates the replacement of 2H⁺ with 2Ag⁺ and further reduce to zerovalent silver and agglomeration is prevented by capping of the alkaloids, saponins, and tannins present in the natural extract on the silver nanoparticles [34,35].

3.2.4. XRD pattern

Fig. 7 shows the XRD pattern of the PPLE synthesized AgNPs, that displayed intense peaks at 2θ values of 38.25°, 44.37°, 64.52°, 77.57° and 85.93° correspondingly representing the miller indices (hkl) of (111), (200), (220), (311), (222)
representing lattice plane reflections of face centered cubic lattice structure. The obtained values were compared with the JCPDS standard card no 04-0783 for silver and were found to be very close [36]. The XRD pattern confirmed the face-centred cubic structure, and the broad peak indicates the smaller crystal size of the AgNPs. The lattice constant obtained from the XRD was 4.0794 ±0.012 Å. The lattice constant was close to the lattice constant value of the standard lattice constant of 4.086 Å [37].

3.2.5. pH point of zero charge of AgNPs

The pH of the silver nanoparticle plays a major role in photocatalytic reactions. The pH_{ZPC} (point of zero charge pH) is the pH at which the net charge of the AgNPs becomes zero. The pH point of zero charge was determined using pH drift method by varying the pH of AgNP solutions from 2 to 12. The initial and final pH values were recorded and the difference between the same was plotted against the initial
pH of the solution. The solution pH at which zero difference in pH values is observed corresponds to the point of zero charge pH.

The point of zero charge was calculated and the graph has been plotted. From Fig. 8, the pHZPC of AgNPs is observed to be 8.5. It is evident that the AgNPs are predominately negatively charged. The AgNPs would obtain a net positive charge in a solution below the pHZPC of pH 8.5. Acid dyes are anionic dyes a net negative charge. When AgNPs are added to the dye solution at acidic pH, the mutual attraction between the positive charge of AgNPs and the negative charge of acid dyes aids in the adsorption of the dye particles on the AgNPs thus aiding in photocatalytic degradation of the dye particles.

3.3. Photocatalytic studies

The photocatalytic activity of AgNPs in the dye degradation of Colomill Brilliant Red 3BN acid dye for different dye degradation parameters was studied by measuring the UV-Visible radiation absorbance of untreated and treated dye solutions. The percentage of dye degradation is tabulated in Table 1.

Fig. 9 shows the degradation of the dye before and after photocatalytic treatment. It can be observed that there is a physical colour difference in the treated dye for 2 h of 5 ppm concentration of dye solution with a catalyst concentration of 10 mg/L at 4 pH.

The effect of the initial concentration of the dye solution on photocatalytic degradation was studied with 5, 10, and 15 ppm of initial concentration. The constant parameters were catalyst concentration at 10 mg/L, pH at 7, and time of irradiation for 2 h. The UV absorption spectra of the various dye solutions before and after photocatalytic degradation are represented in Fig. 10. It is observed that 48% of 5 ppm dye was degraded at the end of the irradiation time, while 28% and 14% of dye were degraded in 10 and 15 ppm solutions, respectively. A steady decrease in the dye degradation was observed with the increase in dye concentration. For constant catalyst concentration, the active functional

<table>
<thead>
<tr>
<th>Dye concentration (ppm)</th>
<th>Catalyst concentration (mg/L)</th>
<th>pH</th>
<th>Time (h)</th>
<th>Dye degradation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>7</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>
groups present in the dye and the concentration of the dye had a direct relationship with the interaction between the photocatalyst and the dye [38]. The photocatalytic activity decreased with the increase in initial concentration, since the active sites of the photocatalyst were limited, thereby increasing the number of dye molecules competing for the active sites of the photocatalyst [39]. As the dye concentration increased, the irradiated light was predominantly absorbed by the dye instead of the photocatalyst, restricting the effective surface plasmon resonance [40].

The effect of irradiation time on the degradation of dye was studied by exposing a 5 ppm dye solution with 10 mg/L catalyst concentration at 7 pH to solar irradiation for 1, 2, and 3 h. As represented in Fig. 11, a decrease in the absorbance value was observed with an increase in irradiation time. The initial concentration of the dye solution was reduced by 18%, 48%, and 60% when the solution was irradiated for 1, 2, and 3 h, respectively. Catalytic activity increased with time. Degradation increased by 167% when irradiation time was increased from 1 h to 2 h. In contrast, the degradation increased by 25% when irradiation was increased by an hour from 2 to 3 h. The photocatalytic degradation efficiency was dependent on the size of the nanoparticle, surface structure, and the size distribution of the silver nanoparticle. There was a steady increase in the dye degradation from 1 to 2 h which was due to the redshift in the local surface plasmon resonance. During further exposure, the degradation rate was slower which was due to the surface restructuring of silver nanoparticles, and cluster formation of AgNPs which led to the blueshift of the local surface plasmon resonance [41]. Hence 2 h of irradiation is optimized for further reactions.

The concentration of the photocatalyst in the dye solution plays a major role in the reaction and degradation rate. In order to study the effect of the concentration of AgNPs as a catalyst on the degradation of 5 ppm dye at 7 pH, the concentration of AgNPs was varied as 5, 10, and 15 mg/L. The photocatalytic reactions were carried out for 2 h. As shown in Fig. 12, the initial concentration of dye was reduced by 18% when 5 mg/L AgNPs was added, while the concentration reduced by 48% and 24% when 10 and...
15 mg/L were used, respectively. The degradation increased by 167% when catalyst concentration was increased from 5 to 10 mg/L but reduced by 50% when catalyst concentration was increased from 10 to 15 mg/L. The increase in the concentration of the photocatalyst resulted in the generation of a greater number of electron–hole pairs and hence faster and effective degradation of the dye was achieved [42]. At lower concentrations of the catalyst, the degradation was lesser which may be due to less accessibility of AgNPs for electron absorption in the conduction band. Similarly, it was observed that when there was an increase in photocatalytic concentration beyond 10 mg/L there was a slight decrease in degradation which may be due to the turbidity of the AgNPs clusters leading to scattering of light and blocking of light penetration inside the dye solution [43,44].

The study of pH on the effect of the photocatalytic reaction is of much importance due to the fact that pH governs the surface characteristics of the photocatalyst [45]. Acid Red 3BN dye used in this study has negatively charged sulfonic groups to enhance the solubility of the dye. Hence the electrostatic attraction between the dye and the silver nanoparticle enables the adsorption of the dye on the surface of the photocatalyst when the pH is acidic [46]. To analyze the effect of pH on the reaction, dye solutions with three different pH 4, 7, and 10 were taken for the study and it was reported that when the pH was acidic, the degradation rate of the dye was higher. The effect of pH on dye degradation was studied for a 5 ppm dye solution with 10 mg/L catalyst concentration maintained at acidic, neutral, and basic conditions. The absorbance values decreased as depicted in Fig. 13. The maximum degradation of 74% was observed at 4 pH, while degradation was 48% and 12% for solutions maintained at pH 7 and 10, respectively. The dye degradation improved with an increase in the acidity of the solution.

3.4. Kinetic modelling

To understand the mechanism of decolourization of dyes during photocatalytic reactions, kinetic models were used as a tool. First-order kinetics, pseudo-first-order, second-order kinetics, and pseudo-second-order kinetics were studied and rate constants for each model are tabulated in Table 2 and represented in Fig. 14a–d.

The reaction rate was directly proportional to the concentration of the reactants in first-order reaction. Among all four models listed, the first-order kinetics fitted well with the highest correlation coefficient (R^2) value of 0.976. The other models exhibited lower correlation coefficients than the first-order kinetics.

3.5. Study of changes in the morphology of AgNPs after photocatalytic treatment

There is no significant change in the morphological structure of silver nanoparticles before and after the treatment.
as indicated in Fig. 15a and b. The particle size of AgNPs range from 20 to 80 nm with a maximum number of 50 nm particle size which is very close to the morphology of the AgNPs before photocatalytic reaction. Meanwhile the after treatment FE-SEM images reveals the dyes adhering to the silver nanoparticles. From Fig. 15c, the size of the dye can be noted as from 12 to 26 nm.

3.6. Stability and reusability study

In order to study the practical application of the synthesized silver nanoparticle were subjected for reusability and stability studies. The dye particles after each run was removed by centrifugation process and the obtained silver nano was reused. The reusability experiment was conducted for three successive runs. As shown in Fig. 16 even after three successive photocatalytic treatments, there is no significant difference observed in the efficiency of the photocatalyst. The morphological structure and size of the silver nanoparticles before and after the photocatalytic activity remain almost the same. From these studies, it is evident that the silver nanoparticle exhibits photostability and reusability against the dyes. This confirms the practical application of silver nanoparticles in the treatment of dye wastewater.

3.7. Mechanism

The possible mechanism of photocatalytic activity in the degradation of organic dyes is represented in Fig. 17.

When solar irradiation is induced in the bath containing dyes and PPLE-AgNPs, the dye gets excited and generates e- and the PPLE-AgNPs undergo non-radioactive plasmonic decay by absorbing the photons and generating excited electrons in the conduction band. This process increases the potential energy of the electrons, priming them for further reactions [47,48].

\[
\text{Dye} + \text{hv} \rightarrow \text{Dye}^* \quad (I)
\]

\[
\text{AgNPs} + \text{hv} \rightarrow \text{AgNPs}e^- h^+ \quad (II)
\]
The acid dye molecules are adsorbed onto the surface of the silver nanoparticles, creating a localized environment where the dye molecules can interact with the nanoparticle surface and reactive species [49–51]. The excited electrons are transferred from the conduction band of the silver nanoparticles to the adsorbed dye molecules on the nanoparticle surface. This leads to the formation of electron-deficient sites on the nanoparticle surface [52].

\[
\text{Dye}^* + \text{AgNPs} \rightarrow \text{Dye} + (\text{AgNPs})e^- \quad \text{(III)}
\]

The transferred electrons can react with molecular oxygen adsorbed on the silver nanoparticle surface, leading to the generation of reactive oxygen species (ROS) such as superoxide radicals (O$_2^-$) and hydroxyl radicals (OH$^\cdot$). These ROS are highly oxidative and play a crucial role in the degradation of the dye molecules [53].

\[
\begin{align*}
\text{O}_2 + (\text{AgNPs})e^- & \rightarrow \text{AgNPs} + \text{O}_2^- \quad \text{(IV)} \\
\text{O}_2^- + \text{H}^+ & \rightarrow \text{HO}_2^- \quad \text{(V)} \\
2\text{HO}_2^- & \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 \quad \text{(VI)} \\
\text{H}_2\text{O}_2 + \text{O}_2^- & \rightarrow \text{HO}^+ + \text{HO}^- + \text{O}_2 \quad \text{(VII)} \\
(\text{AgNPs})e^- + \text{H}_2\text{O}_2 & \rightarrow \text{HO}^+ + \text{HO}^- \quad \text{(VIII)} \\
\text{H}_2\text{O} + (\text{AgNPs})h^+ & \rightarrow \text{AgNPs} + \text{HO}^+ + \text{H}^- \quad \text{(IX)}
\end{align*}
\]

\[
\text{HO}^- + (\text{AgNPs})h^+ \rightarrow \text{AgNPs} + \text{HO}^+ \quad \text{(X)}
\]

The generated ROS, particularly hydroxyl radicals (OH$^\cdot$), initiate a series of oxidative reactions with the adsorbed acid dye molecules. Hydroxyl radical abstract hydrogen atoms from the dye molecules, breaking down the chemical bonds and resulting in the degradation of the dye molecules into smaller fragments [54]. The degradation products of the acid dye are smaller and less coloured than the parent dye molecules. These degradation products are often less harmful...
to the environment. The byproducts can further undergo secondary reactions or mineralization into harmless substances [55].

The energy band gap of the synthesized silver nanoparticle was obtained using Eq. (3):

\[
E_{\text{g}} = \frac{hc}{\lambda_{\text{max}}}
\]

where \(h \) = Planck’s constant, \(c \) = speed of light, \(\lambda_{\text{max}} \) = maximum wavelength of light.
Hence the maximum wavelength obtained for PPLE-AgNP is 432 nm and the energy band gap is 2.87 eV. The valance band and conduction band potential were calculated using Mulliken electronegativity and band gap of the synthesized nanoparticle was found to be 1.3408 and –1.5291 eV, respectively. The photocatalytic studies of the PPLE-AgNPs shows that the degradation of dyes is due to the reactive oxygen species generated by surface plasmon resonance and creation of positive holes in the silver nanoparticle.

3.8. Comparative study

Finally, the test results were compared with the previous findings to find out the effectiveness of the AgNPs as photocatalysts. In most of the cases, cationic dyes were used for the photocatalytic study. From the comparison data Table 3, it is noted that the easily degradable cationic dyes like methyl orange (molecular weight - 327.33 g/mol), methylene blue (molecular weight - 319.85 g/mol), Rhodamine B (molecular weight - 479.02 g/mol), were used for the degradable studies. This may be because the diffusion rates of their dyes are higher than those of the textile dyes, due to their low molecular weight [17]. The Colomill Brilliant Red 3BN, (molecular weight - 677.6 g/mol) which is widely used by the industry was taken for the study and the dye removal efficiency is comparable with the other studies. In this study, no other reducing agents were used, hence the process is purely based on the photocatalytic activity of AgNP alone.

4. Conclusion

In this present study, P. pinnata leaf extract PPLE was successfully used as a reducing and capping agent for the synthesis of AgNPs from AgNO₃ under simple, easy, and rapid environmentally friendly methods. The UV-Vis results confirm the formation of AgNPs at a peak value of 432 nm. From FE-SEM analysis, the structure of the AgNPs was found to be spherical and the maximum particle size range is 50 nm. The elemental study confirms the presence of AgNP at 3.0 eV. The photocatalytic studies were efficient at 5 ppm dye concentration, 10 mg/L of catalyst concentration at a pH of around 4, and a time is 120 min. The efficiency was found to be 74% which is comparable to higher molecular-weight compound dyes. The kinetic reactions followed pseudo-first-order with the rate constant of 0.00577 min⁻¹. This method has several advantages the usage of green synthesis, without using and reducing agents or chemicals, eliminating the need for organic solvents, and readily can be integrated for the purification of textile wastewater treatment which is cost-effective and the photocatalyst can be reused.

References

