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a b s t r a c t
In this study, the adsorption process of nickel and lead on natural supports, specifically bentonite 
and activated carbon, was modeled using an artificial neural network (ANN). The primary objective 
was to quantify the adsorption yield of the adsorbed metal. The developed ANN model was vali-
dated to assess its effectiveness in predicting experimental data sets. For both nickel and lead, the 
mean square error of the model was calculated to be 3.72 × 10–4, indicating a highly accurate model. 
In addition, the trained ANN was used to predict the influence of several parameters, including pH, 
contact time, initial metal concentration, temperature, material, and adsorbent concentration, on the 
adsorption of these metals using the two different adsorbents. The ANN was well constructed and 
optimized using a 6-10-1 topology. The performance of the model was evaluated using test data, 
which showed high correlation coefficients for (R2) values of 0.99430 and 0.99439 for the validation 
and test data, respectively. These results indicate the robustness and accuracy of the ANN model 
in predicting the adsorption behavior of nickel and lead on bentonite and activated carbon.
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1. Introduction

The contamination of water by organic and inorganic 
substances is a significant environmental issue [1,2]. Mineral 
pollutants, such as heavy metals, are of particular environ-
mental concern due to their high density, which exceeds 
5 g/cm3 [3,4]. These pollutants are typically found in trace 
amounts in the environment and consist of a range of sub-
stances, such as arsenic, zinc, manganese, nickel, cobalt, 
lead, cadmium, mercury, and copper. The distinct chemical 
properties of heavy metals enable their toxicity to humans 
as well as flora and fauna [5]. Lead is notably recognized 
as a hazardous micropollutant among these metals, and 
its toxicity remains significant even in trace concentrations 
[6–8]. In contrast, nickel and its inorganic compounds are 

generally considered less toxic. Based on the International 
Agency for Research on Cancer’s categorization, nickel com-
pounds fall under the group 1 category as carcinogens for 
humans while metallic nickel is classified under group 2B as 
a possible human carcinogen [9,10].

Several methods exist to eliminate heavy metals, includ-
ing adsorption, which is a cost-effective approach known 
for its efficacy in retaining and eliminating inorganic and 
organic compounds [11,12]. Currently, multiple authors 
in [13,14] have recognized activated carbon as a versatile 
adsorbent, supported by multiple studies demonstrating 
its effectiveness. Other viable options for adsorbent materi-
als include activated alumina, goethite, kaolin, hydroxides 
[15,16], and clays like bentonites [17–22].
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Previous studies have demonstrated that nonlinear 
models effectively characterize the complexity of adsorp-
tion phenomena. Two approaches must be undertaken by 
researchers to develop these models. The first approach 
requires mathematical modeling, incorporating a deep 
understanding of chemistry, biology, and other sciences to 
describe a highly complex equation, specifically in the context 
of this paper. The second approach utilizes experimental 
data to elucidate the relationship between input param-
eters and resulting outputs [23]. This method is applied in 
processes characterized by complex physical experimenta-
tion or substantial nonlinear behavior, utilizing a multivar-
iate parameter database. This approach directly pertains to 
the subject matter addressed herein.

The intricate and protracted process of constructing 
mathematical models for complex systems has motivated 
researchers to investigate artificial intelligence techniques 
as an alternative modeling approach. Artificial neural net-
work (ANN) has become a valuable modeling tool in recent 
years for studying various wastewater treatment methods 
[24–26]. ANNs can learn patterns and relationships from 
data, enabling approximation of the behavior of underly-
ing systems. ANNs are a powerful and promising mod-
eling tool in various fields due to their ability to capture 
nonlinear relationships, handle high-dimensional data, and 
adapt to noisy or incomplete information [27].

ANNs offer significant advantages as they provide a 
learning mechanism for developing intelligent models to 
predict adsorption yield. ANNs can effectively learn from 
input-output data to identify complex patterns and rela-
tionships within the adsorption process. Through the acqui-
sition of relevant data, ANNs can accurately predict the 
amount of adsorption. Recent studies have utilized ANNs 
to examine the adsorption of Ni and Pb onto various sor-
bents. Specifically, [24,25,28] have implemented ANN mod-
eling to investigate fluoride adsorption systems.

This work aims to maximize gains and advantages by 
targeting two distinct objectives. The first objective revolves 
around environmental considerations, specifically, the elim-
ination of two toxic heavy metals with demonstrated harm-
ful effects. In addressing this issue, the study explores nat-
ural materials, carbon and bentonite, as potential solutions 
for mitigating the environmental impact of toxic waste. 
The second objective of this study is to optimize and pre-
dict adsorption yield using intelligent models to facilitate 
decision-making and improve industrial operations.

To meet these objectives, a singular ANN is synthe-
sized using the MATLAB Neural Networks toolbox (version 
2018a). The ANN is trained with a database gathered from 
available literature sources [8,29] and through experimen-
tal measures. This enables the ANN to learn and predict 
the adsorption yield (%) of the two metal adsorbents. This 
approach not only establishes a comprehensive learning 
database for the ANN but also guarantees the production 
of dependable predictions to support the objectives of the 
research.

2. Materials and methods

We have established and optimized operating conditions 
based on a review of relevant literature and preliminary 

experiments [30–33]. These conditions are described in 
detail in the following sections.

2.1. Data collection, pretreatment and analysis

Two metals, nickel nitrate (Ni(NO3)2) and lead nitrate 
(Pb(NO3)2), were utilized in this study. We prepared stock 
solutions of nickel and lead with a 1,000 mg/L concentration 
and kept them away from light. We then diluted the solu-
tions in various proportions to obtain lower concentrations.

2.2. Adsorbates

2.2.1. Bentonite

Bentonite is a white pigment powder derived from 
natural bentonite sourced from Maghnia (Tlemcen City, 
Algeria). It is obtained by grinding, sieving up to 100 µm, 
and then drying the natural bentonite.

2.2.2. Activated carbon

The powdered active carbon utilized in this study is 
LABKEM CHAR-PWA-500 by Labbox (France), with a 
pH of 7.50 and an ash content of 0.19%.

2.3. Determination of Ni2+ and Pb2+

To determine the levels of Ni2+ and Pb2+ in the water sam-
ples, a UV-Visible Spectrophotometer of the Shimadzu-1240 
type (Japan) was employed, with measurements taken at 
wavelengths of λ = 240 and 520 nm, respectively.

2.4. Description of the adsorption tests

The batch adsorption of nickel and lead was conducted 
discontinuously on a shaker by contacting a synthetic solu-
tion of nickel and lead, containing various concentrations, 
with a constant mass of the adsorbent. Subsequently, solid 
and liquid separation was accomplished by using a mem-
brane with 0.45 µm porosity through vacuum filtration of 
the sample. Moreover, we determined the concentration of 
each filtered sample. Finally, Eq. (1) was used to calculate the 
adsorption yield (Y(%)).
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where Ct: concentration of the solution at time “t” (mg/L); 
Cin: initial concentration (mg/L).

Various tests were conducted to study the impact of 
certain factors on the removal of nickel using bentonite 
and lead using activated carbon. These factors include the 
contact time, ranging from 3 to 300 min, the initial concen-
tration of Ni2+ and Pb2+, varying between 20 and 250 mg/L, 
the adsorbent dosage, ranging from 0.1 to 5 g/L, the tem-
perature, ranging from 15°C to 60°C, and the pH of the 
treatment, which was between 1 and 9. The impact of pH 
was examined by buffering the synthetic solution of nickel 
and lead with HCl (0.1 N) and NaOH (0.1 N) solutions 
throughout the adsorption test.
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2.5. Data collection

A database of adsorption performance data for two spe-
cific metals on two different adsorbents was compiled by 
gathering experimental data from existing literature sources 
[8,29] and by performing new experimental measure-
ments under a range of initial conditions.

3. Neural modeling

3.1. Description

A multilayer ANN, often referred to as a neural network 
with multiple layers, is a computational model inspired by 
the structure and functioning of the human brain [34]. It 
is designed for a wide range of machine learning and pat-
tern recognition tasks. Here is a detailed description of a 
multilayer ANN.

3.1.1. Input layer

The first layer of the network is called the input layer. 
It consists of neurons, each representing a feature or input 
variable. Neurons in this layer simply pass on the input val-
ues to the next layer without any processing. Each neuron 
corresponds to one feature in the input data [35,36].

3.1.2. Hidden layers

Between the input and output layers, there can be one 
or more hidden layers. These layers are where the network 
performs most of its computation. Neurons in each hidden 
layer process the information from the previous layer and 
pass it on to the next layer. These neurons apply weighted 
sums and activation functions to transform the data.

3.1.3. Weights and connections

Each connection between neurons (synapse) has an 
associated weight. These weights are learned during the 
training process. Weights determine the strength of the 
connection and play a crucial role in shaping the network’s 
ability to model complex relationships within the data [37].

3.1.4. Output layer

The final layer of the network is called the output layer. 
Its number of neurons depends on the nature of the task. 
For binary classification, it might have one neuron, while 
for multi-class classification or regression tasks, it may have 
multiple neurons. The neurons in the output layer pro-
duce the network’s final predictions based on the computa-
tions performed in the hidden layers [38].

3.1.5. Activation functions

Each neuron in the hidden layers and output layer typ-
ically applies an activation function to the weighted sum of 
its inputs. Commonly used activation function is usually 
the distorted hyperbolic tangent given by Eq. (2), repre-
senting the hyperbolic function. This formula calculates the 
output z for each neuron in the network [39].
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where a is the coefficient that determines the slope of the 
sigmoidal function in Eq. (3) based on the expression of s.

s w x bij ij ii
� ��  (3)

where xij is the input of the ith neuron provided by the jth 
neuron of the previous layer; wij denotes the connection 
weight of connection with the jth neuron of the previous 
layer; bi corresponds to the ith neuron bias.

3.2. ANN training

Multilayer ANNs are trained using a supervised learn-
ing algorithm called backpropagation. Backpropagation 
works by adjusting the weights of the ANN based on the 
error between its predictions and the known target val-
ues (Fig. 1). This process is repeated until the ANN is able 
to accurately predict the target values for all of the data 
samples in the training set.

Learning is essential for the development of ANNs, as 
it allows them to adapt their behavior to achieve desired 
results. To learn, ANNs are exposed to a set of data sam-
ples that represent the desired behavior (samples) [40]. By 
studying these examples, the ANN can gradually fine-tune 
its internal parameters (weights) to learn and replicate 
the samples [38]. This process results in improved overall 
performance and more accurate predictions.

Learning algorithms, such as the Levenberg–Marquardt 
algorithm, are used to update the weights of the ANN in a 
way that minimizes the mean square error (MSE) [39,41]. 
The MSE is a measure of the difference between the pre-
dicted and actual values of the target variables [42].

3.2.1. Levenberg–Marquardt algorithm

During the learning phase, various algorithms can be 
utilized, including the Levenberg–Marquardt algorithm. 
This algorithm adapts the values of the weights and through 
an iterative process, minimizing the errors of the output 
neurons (supervised learning) using Eqs. (4) and (5).

ANN

LEARNING 
ALGORITHM

Input ANN 
output

Desired 
output

+
_

Fig. 1. Artificial neural network supervised learning.
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where J is the Jacobian matrix containing the initial deriv-
atives of errors of the neural network, while considering 
the weights and biases. K represents the current iteration 
of the learning algorithm. εi is the output error of the ith 
neuron, and µ denotes the learning rate.

The ANN’s learning progress is governed by an index, 
commonly known as the mean square error (MSE). The MSE 
is an objective measure of the average difference, squared, 
between the ANNs predicted output and the actual out-
put. It serves as a criterion for evaluating the network per-
formance during its learning process. At times, the specific 
expression for the MSE can be represented by a mathemat-
ical relation, such as Eq. (6) [43]. This equation denotes a 
formal representation of the MSE formula used in the con-
text of the ANN learning process.
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where M: Levenberg–Marquardt algorithm iterations 
number, L is the dimension of the output layer, yi is the 
ith desired output of the ANN and k denotes the current 
iteration.

3.2.2. ANN synthesis procedure

The classical development cycle of a neural network 
can be divided into ten steps, as shown in the flowchart 
in Fig. 2. These steps are preceded by four operations to 
construct and use a reliable representative database.

• Database collection,
• Selection of inputs and outputs of the neural model,
• Database preparation,

• Data formatting.

The following three phases are very crucial and are 
followed in order to synthesize a reliable ANN.

• During the initial learning phase, the ANN is trained to 
produce desired outputs in response to specific input, 
which is known as learning data. The ANN’s perfor-
mance is then assessed by calculating appropriate per-
formance indices using reference data, or test data. Even 
though the test data differs from the training data, it is 
carefully selected to align with the training data, thus 
ensuring consistency and evaluating the quality of 
ANN’s learning.

• The ANN undergoes a validation phase to assess its gen-
eralization capability, wherein additional independent 
data called validation data is used. This data is distinct 
from the training and testing data utilized in the earlier 
phases. By evaluating the ANN’s performance using the 
validation data, the model’s ability to accurately pre-
dict outputs for unseen inputs is tested and validated. 
This is a crucial step to ensure the ANN can accurately 
apply its learned patterns and relationships to new and 
unfamiliar data, verifying its reliability and robustness 
beyond the data exclusively utilized in the training and 
testing phases.

• Testing phase: The ANN has the capability to generate 
desired outputs for any given input. During the test-
ing phase, the ANN can produce desired outputs for 
any given input as it has learned and generalized pat-
terns and relationships from the training and validation 
phases. This ability enables the ANN to generate accu-
rate and reliable outputs for a wide range of inputs, 
including those it has not previously encountered. The 
production phase indicates the effective implementa-
tion of the trained ANN model, enabling its use in real-
world applications to generate desired outputs based 
on diverse inputs.

During each phase, a certain amount of data is extracted 
from the learning dataset which contains 1,000 samples, 
500 samples for each metal. Typically, 80% of the data is 
reserved for the learning phase, 10% for the validation phase, 
and the remaining 10% for testing the ANN. Additionally, 
specific data preprocessing operations must be carried 
out to guarantee optimal outcomes during the learning 
phase like checking and cleaning.

3.2.3. Partial normalization of the database

Scaling is frequently a necessary aspect of data prepa-
ration, particularly for input data, as bounded sigmoid 
transfer functions are commonly utilized in static models. 
In this study, a distinct sub-database was utilized for the 
adsorbent/metal pairs. Numeric values were normalized to 
enhance optimization for achieving output values within the 
range of [–0.9, 0.9].

3.3. ANN architecture

In this study, ANN model is utilized with multiple inputs, 
including pH, temperature, initial metal concentration, 

 

Fig. 2. Flowchart of artificial neural network design.
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contact time, adsorbent concentration, and matter. The 
ANN’s output was the adsorption yield. The ANN archi-
tecture used in this study had a topology of [6-10-1], 
as shown in Fig. 3. Table 1 outlines the learning outcomes.

The dataset necessary for training the ANN was derived 
from conducted adsorption experiments. The Levenberg–
Marquardt algorithm was utilized for network training. 

The ANN modeling was implemented via the neural net-
work toolbox of MATLAB (2018a). It is worth noting that 
a larger dataset for model training, testing, and validation 
would enhance the performance of the ANN architecture.

Fig. 4 illustrates the progression of the mean square 
error. The desired outcome is obtained after 2 × 104 itera-
tions. The obtained MSE for the two metals is 3.72 × 10–4.
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Fig. 3. Topology of adopted neural architecture.

Table 1
Learning results

ANN 
description

Material Inputs Output Number of 
hidden layers

Number of neurons 
in the hidden layer

Maximum 
epochs

MSE

1: Ni
2: Pb

t, material, [ads], 
Cin, pH, T

Adsorption 
yield (%)

01 10 2 × 104 3.72 × 10–4
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4. Results and discussion

The synthesized ANN has demonstrated significant 
effectiveness in predicting the adsorption yield within the 

range of data included in the training set. The ANN’s pre-
dicted efficiency for adsorption yield is comparable to the 
results obtained from the training and test data provided 
by the same network. In Table 2 comparison results are 
presented between predicted and experimental adsorbed 
yields of two metals using two types of adsorbents.

Fig. 5 illustrates the performance results of the ANN 
model by presenting the correlation between observed and 
predicted heavy metal adsorption yields. These values serve 
as a strong endorsement of the model’s accuracy. It is evi-
dent, from the same figure, that all data points align pre-
cisely along the diagonal, and the correlation coefficients 
(R2) for both the test and validation datasets are impres-
sively high, measuring 0.99430 and 0.99439, respectively.

Table 3 compares the training performance of synthe-
sized ANN with other ANN models used in different stud-
ies on the adsorption of Ni(II) and/or Pb(II) using different 
adsorbents. The comparison results affirm that the developed 
ANN architecture for our prediction model is a good choice. 
This architecture exhibits precision, demonstrating its ability 
to make accurate predictions with a high level of confidence.

4.1. Predicting of the adsorption of Ni on bentonite and Pb on 
activated carbon using ANN

The developed ANN model was used to investigate 
the effects of operating conditions on adsorption in nickel/

 
Fig. 4. Evolution of the mean square error during the artificial 
neural network training phase.

Table 2
Comparison of the predicted and experimental adsorbed yields of the two metals by two types of adsorbents

Material
1: Ni, 2: Pb

t (min) [ads] (g/L) Cin (mg/L) pH T (°C) Yexp (%) Ypre (%) Absolute 
error

2 60 3 20 4 22 99.08 99.84 0.76
1 120 3 100 5.5 15 70.62 70.37 0.25
2 180 0.6 100 5.64 18 90.03 89.43 0.60
1 5 5 100 7.66 16 85.50 84.80 0.70
2 5 0.5 10 6 25 78.00 78.74 0.74
2 60 0.5 40 6 25 52.36 52.98 0.62
2 180 1 50 2 25 34.21 34.83 0.62
2 60 1 20 4 47 90.50 91.07 0.57
1 3 5 30 7.66 16 92.33 92.66 0.33
1 120 3 80 5 15 85.87 85.69 0.18
2 180 0.7 500 6 30 89.09 89.27 0.18
1 120 3 80 5.5 15 85.83 85.60 0.23
2 180 0.7 100 5.64 20 82.28 82.37 0.09
1 120 4 80 5.5 15 88.35 88.38 0.03
2 180 0.7 200 6 30 94.77 95.51 0.74
2 140 0.5 70 6 25 62.08 62.49 0.41
2 180 0.7 100 5.64 30 90.63 90.17 0.46
2 180 0.7 300 6 30 96.65 96.41 0.24
1 180 5 100 7.66 60 97.50 97.97 0.47
1 3 5 70 7.66 16 91.21 91.09 0.12
2 180 0.2 100 5.64 18 87.70 87.06 0.64
1 3 5 60 7.66 45 93.16 92.82 0.34
1 3 5 40 7.66 16 91.87 92.25 0.38
1 120 3 80 6 15 89.21 89.17 0.04
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bentonite and lead/activated carbon systems. The adsorp-
tion capacities predicted by the ANN model were com-
pared against experimental adsorption data, as shown in  
Figs. 6–10.

4.1.1. Effect of contact time

Fig. 6a and b display the adsorption yield plotted against 
contact time for nickel on bentonite and lead on activated 
carbon, respectively. The predicted and experimental val-
ues were obtained under different conditions, as shown 
in these figures. The equilibrium time was determined  
from Fig. 6.

The graphs indicate that both metals reach equilib-
rium quickly. At the start of the adsorbate–adsorbent 

contact, there are numerous free sites which results in a 
rapid adsorption process, causing the curves to be steep 
initially. The binding process of heavy metals, however, 
decelerates gradually as the adsorption sites become occu-
pied [47,48]. The widely reported literature indicates a two-
stage adsorption mechanism, with the initial stage being fast 
and quantitatively dominant, while the following stage is 
slower and quantitatively negligible [49].

Fig. 6a shows that after 20 min of contact the nickel 
removal rate is close to 80%, the nickel adsorption after 
120 min of treatment reaches 86.1%. Fig. 6b depicts effective 
lead adsorption within the initial 20-min interval, followed 
by stabilization leading to equilibrium. This phenomenon 
is explicable via molecular diffusion’s role in transporting 
ions to the adsorption site, until adsorption equilibrium is 

  

  

0 25 50 75 100

Target

0

25

50

75

100
Ou

tp
ut

Data
Y=X
FIT

Training
R=0.99822

0 25 50 75 100

Target

0

25

50

75

100

Ou
tp

ut

Data
Y=X
FIT

Valida�on
R=0.99439

0 25 50 75 100

Target

0

25

50

75

100

Ou
tp

ut

Data
Y=X
FIT

Test
R=0.99430

0 25 50 75 100

Target

0

25

50

75

100
Ou

tp
ut

Data
Y=X
FIT

All
R=0.99673

Fig. 5. Optimal neural network performance for training, testing, validation data and all data.

Table 3
Comparison of the performance and application of this work to other works using artificial neural network prediction

References Adsorbent Adsorbate R2

[44] Ni(II) Ultrasonically modified chitin (UM-chitin) 0.9995
[45] Pb(II) and Ni(II) Biochar derived from date seeds 0.9923
[46] Pb(II) Walnut shells functionalized with carboxylate groups 0.9915
Our work Pb(II) and Ni(II) Bentonite and activated carbon 0.9943
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reached. The behavior of all adsorption sites towards the 
lead ions subsequently becomes alike.

4.1.2. Effect of pH

The adsorption of metal ions is strongly influenced by 
the pH of the solution. Objective evaluation of these mech-
anisms is essential. Mechanisms that are highly depen-
dent on pH, including ion exchange, complexation, and 
retention by electrostatic forces [50,51], contribute to this 
phenomenon.

Fig. 7a displays the adsorption yield of nickel on ben-
tonite at various pH levels. The results indicate a posi-
tive correlation between the pH levels and adsorption 
efficiency. At pH = 3, the adsorption is somewhat low, 
whereas nearly complete removal of nickel ions (92.2%) 
can be achieved at pH = 7. In contrast, the pH signifi-
cantly affects the removal of lead ions on activated carbon 
(Fig. 7b). The experimental study demonstrates that the 
removal efficiency varies between pH = 2 and pH = 7. The 
findings indicate that the retention capacity is affected by 
the parameter value, with pH = 6 identified as the optimal 
pH for achieving the highest lead ion adsorption results.

 
(a) (b) 

Fig. 6. Kinetics adsorption of nickel on bentonite (a) and lead on activated carbon (b) and comparison between experimental data 
and artificial neural network predictions.

 
(a) (b) 

Fig. 7. Effect of pH on the adsorption of nickel on bentonite (a) and lead on activated carbon (b) and comparison between experi-
mental data and that predicted by artificial neural network.
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4.1.3. Effect of the initial concentration of the adsorbent

The study investigated the impact of adsorbent concen-
tration on the adsorption yield of Ni and Pb on bentonite 
and activated carbon, respectively. The findings are dis-
played in Fig. 8a and b.

Fig. 8a demonstrates that the rate of nickel removal by 
bentonite rises with the quantity of adsorbent used. This is 
due to the increased number of retention sites on the sur-
face of the adsorbent when more bentonite is used. This 
outcome is consistent with the research of Karapinar and 

Donat [52] who used bentonite as an adsorbent [52]. Based 
on these findings, we selected a 3 g/L quantity of benton-
ite as the optimal amount. Fig. 8b demonstrates that the 
metal removal rate increases as the quantity of adsorbent 
increases. Regardless of the weight of activated carbon, 
it effectively adsorbs more Pb2+ ions. An ideal amount of 
1 g of this carbon is adequate for adsorbing the maximum 
amount of Pb2+ metal ions.

4.1.4. Effect of temperature

Fig. 9 illustrates that raising the temperature up to 
30°C leads to improved adsorption and an adsorption rate 
of 90.61%. This indicates that the temperature boosts the 
kinetic energy of lead ions and their diffusion towards sorp-
tion sites. However, further increased temperature reduces 
adsorption, suggesting exothermic adsorption of Pb2+ ions. 
This phenomenon, known as desorption, occurs when mol-
ecules adsorbed on a surface become detached, especially 
due to the increase in temperature. Bias and subjective 
evaluations have been excluded, and the language used is 
clear and precise without the use of ornamental language. 
The sentence structure and grammar are also correct.

4.1.5. Effect of the initial metal concentration

The efficacy of two adsorbents in removing nickel and 
lead from aqueous solutions was examined by altering 
the metal concentration within the 10–800 mg/L range, as 
shown in Fig. 10a and b.

According to Fig. 10a, the clay’s adsorption efficiency 
increases with an increase in initial metal concentration 
up to 80 mg/L. Thereafter, the adsorption efficiency of the 
clay continues to increase with an increase in initial metal 
concentration, and beyond 80 mg/L, a stabilization of the 
adsorbed yield is observed. Thereafter, the adsorption 

 
(a) (b) 

Fig. 8. Effect of initial adsorbent concentration on adsorption of nickel/bentonite (a) and lead/activated carbon (b) and comparison 
between experimental data and that predicted by artificial neural network.

 
Fig. 9. Effect of temperature on the adsorption of lead on acti-
vated carbon and comparison between experimental data and 
artificial neural network predictions.
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efficiency of the clay continues to increase with an increase 
in initial metal concentration, and beyond 80 mg/L, a stabi-
lization of the adsorbed yield is observed. The high mobil-
ity of nickel ions in diluted solutions results in increased 
interaction with the adsorbent, explaining the observed  
phenomenon.

The impact of initial adsorbate concentrations on lead 
adsorption was investigated within the 100–500 mg/L 
range; results are presented in Fig. 10b. It was discovered 

that as the initial concentration of the adsorbate increases, 
the adsorption efficiency decreases, and the highest removal 
rate of lead achieved was 95.7% at 200 mg/L.

The effectiveness of the proposed model in predict-
ing the adsorption yields of nickel and lead on benton-
ite and activated carbon was demonstrated by the results 
obtained using artificial intelligence techniques. The pre-
dicted values were found to be in close agreement with the 
experimental results for both systems and under different  
conditions.

4.2. Validation

To ensure the reliability of the constructed ANN model, 
we plotted the predicted values of the adsorption efficiency 
against the experimental data, considering all operating 
parameters. The grouping of points around the bisector 
illustrates the similarities between the experimental val-
ues, which are influenced by several parameters such as 
contact time, pH, temperatures, initial metal concentration 
and initial adsorbent concentration, and the corresponding 
predictions generated by the ANN model.

5. Conclusion

ANNs can effectively model the complex process of 
adsorption. This study successfully applied an ANN model 
to predict adsorption of nickel and lead on natural (ben-
tonite) and synthetic (activated carbon) supports. The 
optimal ANN architecture had 6 input neurons, 10 hidden 
neurons, and 1 output neuron. The ANN model yielded 
highly accurate predictions, with strong correlation 
between experimental and predicted adsorption results. 
Using 10 hidden neurons produced the highest R2 values 
and lowest mean squared error. The optimized and trained 

 
(a) (b) 

Fig. 10. Effect of initial metal concentration on nickel/bentonite (a) and lead/activated carbon (b) adsorption and comparison of 
experimental data with artificial neural network predictions.

 
Fig. 11. Prediction of nickel and lead adsorption on bentonite 
and activated carbon by artificial neural network using experi-
mental data as a parameter.
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ANN accurately represented both the test and validation 
data, with R2 values of 0.99430 and 0.99439. This demon-
strates the capability of ANNs to accurately supplement 
traditional and complex models for predicting bioprocess 
parameters like adsorption.

Additionally, ANNs can effectively supplement tra-
ditional and complex models in predicting bioprocess 
parameters.
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