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a b s t r a c t
The objective of this investigation is to establish and evaluate the efficacy of two machine learning 
models, namely random forests (RFs) and support vector machines, in forecasting the calcium con-
centration within the circulating seawater of a closed-cycle seawater cooling system, thereby replac-
ing conventional and time-consuming laboratory testing. These models were constructed based on 
daily seawater quality data, and their predictive capabilities were evaluated utilizing metrics such 
as the coefficient of determination (R2) and root mean square error. Additionally, a sensitivity anal-
ysis employing the Sobol sensitivity analysis technique was performed. The findings indicated that 
both models effectively forecasted the calcium concentration in the circulating seawater within 1-d 
intervals. The RF model displayed superior prediction accuracy during the training phase, and it 
yielded comparable results during the validation phase. Moreover, the sensitivity analysis revealed 
that the RF model outperformed other models in capturing the causal relationship between calcium 
concentration and the input variables associated with the closed-cycle seawater cooling system.

Keywords:  Seawater cooling; Random forest; Support vector machine; Calcium concentration; 
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1. Introduction

The distribution of global water resources is highly 
imbalanced, with freshwater constituting a mere 2.5% and 
seawater comprising the remaining 97.5% [1]. As economic 
development progresses, the scarcity of water resources 
has become increasingly severe. In coastal regions, the uti-
lization of seawater as a cooling source has been employed 
since the 1970s, either through once-through or closed-cy-
cle methods [2]. However, the once-through seawater cool-
ing approach poses significant environmental challenges, 
particularly regarding the discharge of heated water back 
into the sea. Consequently, governments have enacted 

regulations governing the disposal of high-temperature 
wastewater into marine environments. To comply with 
these regulations, the adoption of closed-cycle cooling tech-
nology, which incorporates the use of seawater cooling tow-
ers, has proven to be highly effective. By the end of 2021, 
China had established a total of 22 closed-cycle seawater 
cooling systems, with a collective circulation capacity of 
1,934,800 tons/h [3]. Nevertheless, the presence of salts in 
seawater gives rise to several complex engineering chal-
lenges for the cooling system, including corrosion, micro-
bial attachment [4], and scaling [5]. Of particular concern 
is the formation of calcium carbonate scaling in the cool-
ing devices, as it can lead to blockages and operational 
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shutdown incidents. Thus, the implementation of robust 
chemical treatment and monitoring technologies for sea-
water is imperative to inhibit scale formation and ensure 
the stable operation of closed-cycle cooling systems.

Seawater quality indicators play a vital role in the imple-
mentation of optimization strategies in seawater cooling 
systems. The chemical treatment of seawater scaling in 
cooling systems presents a significant challenge, primar-
ily due to the complexities associated with monitoring cal-
cium concentration. Despite the challenges in measuring 
key indicators like calcium concentration, most utilities rely 
on laboratory tests using offline measurements to monitor 
chemical dosing and predict calcium carbonate deposition 
tendencies. Istepanian [6] argue that the current reliance 
on experiential and offline water quality testing conducted 
by laboratory analysts for system control in water cooling 
systems often leads to excessive dosing to mitigate scaling 
risks. To significantly improve the efficiency of monitoring 
and controlling chemical inventory and residues in seawa-
ter cooling systems, precise and reliable instruments, along 
with advanced control methods for continuous real-time 
online monitoring, are essential. The concentration of cal-
cium ions in closed-cycle seawater is a critical parameter for 
assessing scaling tendencies and serves as fundamental data 
for developing scale inhibitor dosing strategies. Currently, 
the detection of calcium ions in seawater circulation 
primarily involves chemical techniques such as ethylene-
diaminetetraacetic acid (EDTA) titration [7,8], emerging 
detection methods like ion chromatography [9,10], and the 
selective electrode method [11]. Chemical methods remain 
the most widely employed approaches in closed-cycle sea-
water cooling systems due to their advantages in terms of 
accuracy, reliability, and maturity. However, these methods 
require skilled personnel, involve time-consuming processes, 
and are unable to meet the demands of real-time seawater 
quality analysis. Emerging detection methods, although reli-
ant on specialized instruments, suffer from drawbacks such 
as high costs and limited stability. Additionally, sensors used 
for calcium carbonate scaling issues and restricted detec-
tion ranges pose common challenges, limiting their ability 
to provide real-time monitoring within short timeframes 
for seawater closed-cycle cooling systems. Consequently, 
the acquisition of fast and real-time online data on calcium 
concentration has become a paramount priority in the man-
agement of seawater closed-cycle cooling systems.

The emergence of machine learning (ML) technology 
has profoundly transformed diverse domains by facilitating 
predictive capabilities, identification of significant features, 
and detection of anomalies. ML has found wide-ranging 
applications in prediction tasks, employing regression or 
classification modeling techniques. At the core of this pro-
cess lies the assumption that the training examples sup-
plied to the algorithm are representative of the examples 
encountered by the model during prediction, irrespective 
of any temporal dependencies. Supervised learning entails 
utilizing labeled sample outputs to facilitate model training. 
ML methods have been extensively applied to forecast vari-
ations in numerous wastewater variables, such as nitrogen, 
phosphorus, solids, chemical oxygen demand, biochemical 
oxygen demand, and future flow rate [12–17]. These appli-
cations effectively showcase the efficacy of ML algorithms 

in automatically classifying and elucidating chemical pat-
terns within the water environment that would other-
wise be arduous to discern manually.

This research focuses on the development of two machine 
learning models, namely random forests (RFs) and support 
vector machines (SVMs), to predict the calcium concentra-
tion in seawater within a closed-cycle seawater cooling sys-
tem installed in a power plant located on the east coast of 
China. The modeling and validation processes employ 7 y 
worth of seawater quality analysis data. The model parame-
ters are optimized using an optimization method to enhance 
their performance. Additionally, sensitivity analysis is con-
ducted to investigate the cause-and-effect relationships 
between input and output values, thereby aiding in future 
process control and the selection of appropriate machine 
learning models for seawater cooling applications. These 
models utilize online seawater quality parameters, including 
pH and conductivity, to forecast the calcium concentration, 
enabling real-time online monitoring of crucial indicators 
for precise closed-cycle cooling seawater control. The contin-
uous and real-time monitoring, facilitated by accurate and 
dependable instrumentation, along with advanced control 
methodologies, enhances the effectiveness of monitoring 
and controlling chemical inventory and chemical residuals 
within seawater cooling systems.

2. Methods

2.1. Field sampling

The current research collected seawater quality analysis 
data from a closed-cycle seawater cooling power plant situ-
ated in the eastern region of China. The power plant oper-
ates with a circulating seawater flow rate of 100,000 tons/h, 
as depicted in Fig. 1. With a successful operational history 
of over 10 y, the system was designed with seawater con-
centration cycles set at 2.0. Through the analysis of the 
gathered data, it can be inferred that the seawater exhibits a 
relatively stable behavior with periodic variations, display-
ing characteristics typical of regular seawater. Daily sam-
pling was conducted on both the makeup and circulating 
seawater, directly collected from the pipelines. These sam-
ples were transported to an on-site laboratory for subse-
quent analysis, focusing on parameters such as pH, calcium 
concentration, chloride concentration, conductivity, and 
other relevant variables.

2.2. Sample analysis

The pH and conductivity measurements were performed 
using a pH meter (GB 6920-1986) and a conductivity tes-
ter (GB 11007-1989), respectively, following the prescribed 
instrument calibration procedures. On the other hand, the 
determination of calcium concentration employed the pH 
method (GB/T15452-2009). For the measurement of cal-
cium concentration in a seawater sample, a 50 mL sample 
was subjected to filtration, and the calcium ion content was 
determined through titration using an EDTA standard titra-
tion solution. The titration process was carried out within 
a pH range of 12–13, utilizing calcium-carboxylic acid as 
the indicator. During titration, EDTA formed a complex 
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with the unbound calcium ions present in the solution, and 
the endpoint was attained when the color of the solution 
transitioned from purplish-red to bright blue.

2.3. Modeling approaches

2.3.1. Random Forest algorithm

The Random Forest algorithm, depicted in Fig. 2, is 
a widely utilized and robust supervised machine learn-
ing technique proficient in addressing both regression and 
classification problems. It leverages ensemble learning by 
combining multiple decision trees, which serve as the fun-
damental units of the algorithm [18]. Decision trees are 
non-linear and non-parametric supervised classification 
algorithms, where non-terminal nodes represent features 
and terminal nodes correspond to outcomes. As a meta-clas-
sifier, the random forest relies on an ensemble of unpruned 
trees [18]. These trees are generated by randomly selecting 
N features, where N is the square root of the total number 

of features. The construction of the random forest involves 
bootstrapping, where training samples are selected with 
replacement from the original dataset. On average, each tree 
is trained on approximately two-thirds of the dataset, while 
the out-of-bag (OOB) samples are used for evaluating tree 
performance. The OOB evaluation also provides insights 
into feature importance. Feature importance is assessed by 
permuting each feature across the OOB observations for 
every tree and estimating the resulting changes in predic-
tion error. If the accuracy of the new model significantly 
deviates from the original model, it indicates the importance 
of the corresponding feature. To obtain a normalized mea-
sure of variable importance, the ensemble average of this 
measure is divided by the overall standard deviation of the 
ensemble. Classification is accomplished by aggregating 
the majority votes from the ensemble of generated trees. 
The ensemble nature of the random forest method mitigates 
the risk of overfitting training datasets, which is a notable 
drawback of single decision trees. Random forest demon-
strates superior performance compared to individual tree  
algorithms [19].

2.3.2. Support Vector Machine algorithm

The Support Vector Machine algorithm, illustrated in 
Fig. 3, is a prominent and powerful supervised machine 
learning approach widely employed for regression tasks. 
SVMs are data-driven models rooted in the concept of 
structural risk minimization (SRM) [20]. SRM aims to 
simultaneously minimize empirical error and model com-
plexity, thereby enhancing the generalization capability of 
classification and regression problems. SVMs have been 
extensively validated in various environmental research 
domains. For instance, Khalil et al. [21] utilized SVM to 
analyze the spatial distribution characteristics of ground-
water in an agriculture-dominated watershed. SVMs have 
also found application in fields such as streamflow forecast-
ing, water level prediction in lakes, and soil moisture pre-
diction [22,23]. SVM models can be categorized into two 

 
Fig. 1. Schematic diagram of the closed-cycle seawater cooling system.

 
Fig. 2. Illustration of general conceptual model structure for 
Random Forest algorithm.
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types linear support vector regression and nonlinear sup-
port vector regression. In this research, the nonlinear sup-
port vector regression mathematical model was adopted for 
model development. Mathematically, it can be expressed  
by Eq. (1):

f X W X bi i
i

N

i� � � � � �� �  (1)

where Wi and b are the parameters of the linear support 
vector regression function, and φ(Xi) represents the non-
linear mapping function. Various kernel functions, includ-
ing linear, polynomial, sigmoid, and radial basis function, 
were tested, and it was determined that the radial basis 
function yielded the optimal fit for predicting circulating 
water quality in this research. In addition, for the key model 
parameters, the optimal parameter sets of the cost constant 
(C), the radius of insensitive tube (ε), and the scale param-
eter for stable performance of model (σ) were determined 
by the optimization algorithm.

2.4. Modeling construction

2.4.1. Input data preparation

The current research employed the Random Forest 
algorithm and Support Vector Machine algorithm models 
to forecast the calcium concentration in the circulating sea-
water flow. The architectural diagrams of the RF and SVM 
models are depicted in Fig. 4. The entire dataset was parti-
tioned into two distinct subsets the training dataset and the 
validation dataset. For model training, 80% of the data was 
allocated to the training dataset, while the remaining 20% 
was reserved for validation. Prior to training and validation, 
all data underwent normalization using the MinMaxScaler 
method to ensure that they ranged from 0 to 1, except for 
the date parameter. Specific processing techniques were 
applied to the date parameter to enhance its representa-
tion of seasonality. Subsequently, the normalized data were 
employed as both input and output data for the RF and SVM 
models. The optimal model parameters for these two mod-
els were determined using a global optimization algorithm 

 

Fig. 3. Illustration of general conceptual model structure for Support Vector Machine algorithm.

 Fig. 4. Logical flow for two machine learning models.
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tailored to each specific model. Following the determina-
tion of the model parameters, the calcium concentration 
was predicted using the RF and SVM models, and the pre-
dicted values were compared against the measured values 
to assess the prediction performance.

2.4.2. Model parameter optimization

The selection of appropriate parameter values for the 
Random Forest algorithm and Support Vector Machine 
algorithm models is essential for achieving optimal learn-
ing and prediction accuracy. Traditionally, these values are 
determined through trial and error or by referencing prior 
studies. In this research, we utilized the grid search algo-
rithm to identify the optimal parameter values for the RF 
and SVM models. The initial ranges for each parameter 
were carefully chosen based on pre-training procedures, 
enabling a comprehensive exploration of the parameter 
space during the optimization process [24–26].

2.4.3. Assessment of model performance

The objective of this research was to forecast the cal-
cium concentration in a closed-cycle seawater cooling sys-
tem, a task that presents a time-dependent challenge owing 
to the fluctuating calcium concentration and concentration 
rate of the make-up seawater across different seasons. To 
tackle this issue, a regression-based approach was adopted 
for time series prediction. The conceptual model utilized 
in this research is illustrated in Fig. 4. For model training 
and evaluation, the loss function was employed:

 2
1

ˆLOSS
N

i i
i

y y


   (2)

where yi is measured value at time i, and ˆ iy  is predicted 
value at time i.

All code implemented in this research was written in the 
Python programming language. The computational exper-
iments were conducted on a computing system equipped 
with an Intel Core i7-6700HQ CPU and 8GB of RAM. The 
selection of appropriate criteria to assess the performance 
of the machine learning models (RF and SVM) is vital 
for validating their effectiveness.

In this research, two commonly used metrics, namely 
the root mean square error (RMSE) and the coefficient of 
determination (R2), were employed to evaluate the perfor-
mance of the models by comparing the predicted values to 
the measured values. The RMSE provides comprehensive 
information about the predictive capabilities of the models 
by quantifying the accuracy of the predictions. It is com-
puted by squaring the errors and taking the square root of 
the average. This process yields a non-negative, real-valued 
measure that inherently expresses the average magnitude 
of prediction errors. The utilization of RMSE offers several 
distinct advantages. Firstly, it provides a more robust eval-
uation of model performance than simpler metrics like the 
mean absolute error (MAE) due to its sensitivity to outli-
ers, squared errors amplify the impact of larger deviations, 
providing a balanced perspective on the model’s perfor-
mance. Additionally, RMSE is readily interpretable as it 

is measured in the same units as the dependent variable, 
facilitating a more intuitive comprehension of the mag-
nitude of prediction errors. Furthermore, RMSE is con-
ducive to mathematical operations, making it suitable for 
analytical comparisons and optimizations. Therefore, the 
RMSE stands as an indispensable measure in the field of 
predictive modeling, enabling the quantification of predic-
tive accuracy and aiding in the selection and refinement 
of models for a diverse range of applications. The RMSE is  
defined by Eq. (3):
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R-squared (R2), also known as the coefficient of deter-
mination, is a statistical measure used in machine learning 
to evaluate the quality of a regression model. This princi-
ple plays a pivotal role in quantifying the proportion of 
variance in the dependent variable that can be explained 
by the independent variables included in the model. R2 is 
typically calculated as the ratio of the explained variance to 
the total variance, with values ranging from 0 to 1. In the 
context of evaluating model bias, the R2 principle serves as 
a valuable tool to measure the degree to which the model 
captures the underlying relationships between variables 
and to assess the presence of systematic errors or biases. 
A higher R2 value indicates that the model accounts for a 
larger portion of the variance in the dependent variable, 
suggesting a better fit, while a lower R2 value may signal 
potential bias, as it implies that the model inadequately 
explains the variance. The advantages of employing the 
R2 principle in model bias evaluation are twofold. First, R2 
provides a quantitative and interpretable metric for assess-
ing model performance, enabling researchers to compare 
different models and determine whether any observed 
biases are statistically significant. Second, R2 facilitates the 
identification of potential areas for model improvement, 
as a lower R2 may highlight the need for additional inde-
pendent variables or model refinement to mitigate bias. 
The R2 principle is a vital method for evaluating model bias 
due to its ability to quantitatively measure model fit and 
its capacity to inform model refinement and enhancement  
as Eq. (4):
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 (4)

where yi is measured value at time i, ˆ iy  is mean of yi, 
(i 1, …, N) and yi is predicted value at time i.

2.5. Variable sensitivity analysis

Sensitivity analysis is a valuable tool utilized in mod-
eling to investigate the influence of varying independent 
variables on a specific dependent variable under predefined 
conditions. It has proven particularly useful in researching 
and analyzing “Black Box Processes,” where the relation-
ship between inputs and outputs is not readily transparent. 
Sensitivity analysis serves multiple purposes, including 
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(i) understanding the input–output relationship, (ii) assessing 
the contribution of uncertainties in structural model param-
eters to overall output variability, (iii) identifying influen-
tial parameters that significantly affect output magnitudes, 
and (iv) guiding future experimental designs [27,28]. For 
model developers, sensitivity analysis provides insights into 
the model structure and uncertainties associated with input 
parameters, enabling model refinement and increasing con-
fidence. Particularly in complex models, sensitivity analysis 
allows focusing on critical parameters that drive model out-
puts. In this research, the sensitivity of each input parameter 
was quantified using sensitivity indices. The Sobol sensitivity 
analysis function implemented in the Python software was 
employed to conduct the sensitivity analysis. By sampling 
all parameters using this method, any observed changes in 
the output values can be clearly attributed to the modified 
inputs. The Sobol sensitivity indices are defined by Eq. (5):

S
D
Di i
i i

s

s

1

1
.....

.....=  (5)

where D is the variance of model function output whose 
sensitivity to the input parameters. Sij is used to compute 
the second-order contribution from interaction between 

i-th and j-th parameters. Di is1
 is the partial variance corre-

sponding to that subset of parameters.

3. Results and discussion

3.1. Seawater quality monitoring

The dataset utilized in this research comprises daily 
measurements of three seawater quality parameters, namely 
pH, conductivity, and calcium concentration, collected over 
a duration of 7 y. Table 1 presents the daily data for these 
parameters in the closed-cycle seawater system. The cal-
cium concentration in the closed-cycle seawater serves as a 
critical parameter for evaluating seawater quality. Alongside 
the measured pH and conductivity data, the date vari-
able was included as an input parameter, accessible online, 
to construct the machine learning model.

Seawater, a complex mixture of various dissolved salts 
and minerals such as calcium (Ca2+), magnesium (Mg2+) 
ions and so on. Hardness in seawater refers to the concen-
tration of these divalent cations, predominantly Ca2+ and 
Mg2+, and is often expressed in calcium carbonate equiv-
alent units (CaCO3). Seawater scaling involve intercon-
nected nature of seawater quality parameters. Fig. 5 shows 
cases box plots, which offer statistical summaries of the 

Table 1
7 y measured data of circulating seawater quality variables in the closed-cycle seawater cooling system

pH Conductivity (mS/cm) Calcium (mg/L) Magnesium (mg/L) Alkalinity (mg/L)

Max. 8.78 64.00 651.15 2,250.87 245.45
Min. 7.85 39.80 366.49 849.78 82.35
Mean 8.27 51.96 508.80 1,567.86 139.40
Standard deviation 0.16 4.70 49.35 216.51 32.95

*Alkalinity (calculated as CaCO3) M alkali (mg/L).

Fig. 5. Basic statistics analysis of the measured circulating seawater quality data.
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measured circulating seawater quality variables obtained 
from Table 1. To ensure data integrity, the five-number sum-
mary method was employed to detect and eliminate outli-
ers. The analysis reveals that the calcium concentration in 
the closed-cycle seawater ranges from 366.49 to 651.15 mg/L, 
with a mean value of 508.80 mg/L and a standard deviation 
of 49.35 mg/L. This demonstrates significant fluctuations in 
the system during the operation of the seawater circulating 
cooling system, attributable to variations in makeup water 
quality, sewage discharge, and system evaporation, with 
the maximum value being 1.78 times the minimum value. 
Consequently, if a fixed-scale inhibitor dosing scheme is 
employed, it becomes challenging to adapt to the dynamic 
operating conditions of seawater circulating water, leading 
to excessive chemical dosing and increased operational costs. 
Fig. 6 shows the monthly sampling total hardness variation 
curve of circulating seawater over a year. The total hardness 
values in the circulating seawater of the project range from 
65.60 to 92.24 mmol/L, which varies accordingly with month. 
Understanding the complex relationship between these ions 
in seawater is essential for effective scaling management in 
various applications. Limited by current technological con-
ditions, real-time online detection of magnesium and total 
hardness is still quite difficult. Moreover, this article focus 
on adopting a relatively simple method to predict circu-
lating seawater key scaling parameter calcium concentra-
tion. Due to the difficulty in achieving online detection of 

magnesium ions and total hardness, they are not included 
in the models features. The effects of magnesium ions and 
hardness on the models are summarized in other features.

3.2. Training and validation of models

In order to ascertain the optimal model for predicting 
circulating seawater calcium concentration in this research, a 
range of random forest models and support vector machine 
models were constructed and validated. For the RF models, 
the maximum depth of the decision tree was adjusted to 
prevent overfitting, while the number of estimators played 
a crucial role in controlling the model’s performance. In 
the case of SVM, the radial basis function kernel function 
was utilized in the transformation layer. Moreover, select-
ing an appropriate number of nodes for the hidden lay-
ers of SVM was essential to avoid overfitting. The grid 
search algorithm was employed to determine the optimal 
parameters for both the RF and SVM models. The optimal 
parameters for the RF and SVM models, obtained through 
the grid search algorithm, are presented in Table 2.

3.3. Model test

The calcium concentration values of the circulating from 
the closed-cycle seawater cooling system, obtained from 
both observed measurements and the predictions gener-
ated by the machine learning models (RF and SVM), were 
compared. The regression model plots, illustrating the 
training and validation datasets for both RF and SVM, are 
presented in Fig. 7a and b. It is evident that both models 
demonstrate a strong fit with the observed data. According 
to the results presented in Table 2, the RF model achieved 
high coefficient of determination (R2) values of 0.94 and 
0.93 for the training and validation datasets, respectively. 
The corresponding RMSE values for the RF model were 
11.90 and 12.64. Conversely, the SVM model exhibited R2 
values of 0.82 and 0.80 for the training and validation data-
sets, respectively, with RMSE values of 21.41 and 20.18. In 
terms of R2 and RMSE, the RF model outperformed the 
SVM model slightly, demonstrating superior predictive  
performance.

In order to thoroughly evaluate the adequacy of the 
RF and SVM models, we conducted a comprehensive 
analysis of their fitness by examining the relative error, 
as illustrated in Fig. 8a and b. The relative error plots for 
both the RF and SVM models during the training and val-
idation datasets indicate that the relative error remains 
consistently below 10%. However, it is important to note 

 
Fig. 6. Monthly sampling total hardness variation curve of 
circulating seawater over a year.

Table 2
Comparison of the Random Forest algorithm model and Support Vector Machine algorithm performances for prediction of calcium 
concentration

Model Model parameters R2 RMSE

Tr Va Tr Va

RF {‘min_samples_split’: 2}{‘min_samples_leaf’: 1}{‘max_depth’: 17}{‘n_estimators’: 900} 0.94 0.93 11.90 12.64
SVM Svr_c:1,svr_gamma:1 0.80 0.82 21.41 20.18

Tr: Training dataset; Va: Validation dataset.
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that certain data points exhibit notable prediction errors, 
reaching approximately 10%, particularly within the cal-
cium ion concentration range of 300–400 mg/L, as evident 
in both the training and validation datasets. This observa-
tion can be attributed to several underlying factors. Firstly, 
when the calcium ion concentration falls within this range, 
the system’s concentration cycles tend to be low, introduc-
ing complexities in the behavior of calcium ions. Moreover, 
unconventional influencing factors, such as precipitation, 
further contribute to the nonlinearity among various water 
quality parameters. Balabin and Lomakina [29] have previ-
ously emphasized the potential of higher nonlinear distur-
bances to compromise model accuracy in certain machine 
learning models. Thus, for future modeling endeavors, it 
is recommended to consider the incorporation of climate 
factors, including precipitation, as additional features to 
enhance the predictive accuracy of the model. Despite these 
challenges, the RF and SVM models exhibited satisfactory 
modeling accuracy, highlighting their potential for future 
predictions of circulating seawater calcium concentration.

3.4. Variable sensitivity analysis

Table 3 provides a comprehensive summary of the sen-
sitivity rankings for the input parameters influencing the 
prediction of circulating seawater calcium concentration 
using Sobol sensitivity analysis method. The results high-
light the significant role played by both spatial and tem-
poral variables in shaping the model’s predictive perfor-
mance. In the case of the RF model, conductivity emerges 
as the most influential parameter, followed by date and pH. 

Conductivity exhibits a first-order sensitivity, indicating its 
direct impact on the prediction. However, date and pH do 
not exhibit a first-order effect. Notably, the total order index 
of conductivity and pH surpasses the first-order index, 
suggesting the possibility of higher-order interactions. 
Furthermore, the second-order index indicates a weak inter-
activity between conductivity, pH, and date. On the other 
hand, for the SVM model, pH and conductivity emerge as 
the two most significant parameters. Similarly, the total 
order index exceeds the first-order index, indicating the 
potential for higher-order interactions. Specifically, high-or-
der interactions are likely to occur between pH-conductiv-
ity and date-conductivity. These findings shed light on the 
intricate relationships between the input parameters and 
the prediction of circulating seawater calcium concentra-
tion, emphasizing the need to consider both spatial and tem-
poral factors in future modeling efforts. In the context of a 
closed-cycle seawater cooling system, conductivity emerges 
as the most crucial parameter for predicting calcium ion 
concentration, serving as an indicator of the relative stabil-
ity of seawater quality. Therefore, it is reasonable to con-
sider conductivity as the most significant parameter for the 
machine learning models employed in this research to pre-
dict circulating seawater calcium concentration. Moreover, 
date also plays a significant role as an input parameter, 
directly influencing the seasonal variations in seawater 
quality. Based on the characteristics of the closed-cycle sea-
water cooling system, the RF model appears to offer a more 
suitable approach compared to SVM. This is because the 
RF model captures the physical relations more effectively, 
making it a more reliable choice for managing the impact 

 

 
Fig. 7. Comparison of the modeled and observed calcium concentration from the closed-cycle seawater cooling system training and 
validation datasets using RF model and SVM model.
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of high calcium concentration by adjusting the parame-
ters that are closely associated with the system’s physical 
characteristics. Although machine learning models do not 
need to represent the complete physical meaning behind the 
input and output variables, the sensitivity analysis results 
reaffirm the importance of conductivity, as it consistently 
ranked highest among the parameters in the RF model. 
In contrast, the SVM model exhibited pH as the highest-rank-
ing parameter, which may not possess a direct physical 
interpretation. On the other hand, the RF model provided 
more acceptable results due to its consideration of the 
relationship between conductivity and date, as well as the 
additional influence of factors such as ionic strength and 

flocs based on seasonal variations [30]. Furthermore, the 
impact values presented in Table 3 demonstrated mini-
mal variation across all variables in the SVM model. From 
a process control perspective, the RF model demonstrated 
greater reliability and reasonableness compared to the  
SVM model.

4. Conclusion

The primary objective of this research is to develop 
two robust machine learning models, specifically random 
forest and support vector machine, for accurate predic-
tion of calcium concentration in the circulating seawater 

Table 3
Sensitivity rank of input variables in RF model and SVM model using Sobol sensitivity analysis method

Variable ST ST_conf S1 S1_conf S2 S2_conf

RF Conductivity 0.879241 0.072107 0.716750 0.062699 pH-Conductivity 0.097877 0.053854
pH 0.017515 0.023172 0.021943 0.037859 Date-Conductivity 0.062365 0.043922
Date 0.153901 0.017515 0.019231 0.045539 Date-pH 0.056753 0.045539

SVM Conductivity 0.874688 0.278289 0.009485 0.101294 pH-Conductivity 0.325847 0.335684
pH 0.926215 0.301642 0.052405 0.121983 Date-Conductivity 0.076679 0.107361
Date 0.520664 0.210845 0.019458 0.049106 Date-pH –0.007330 0.098905

*First-order index: measure the contribution of single model input to output variance.
Second-order index: measure the contribution of the interaction between the inputs of two models to the output variance.
Total order index: measures the contribution of model input to output variance, including first order and higher order.
_conf: corresponding confidence interval, the confidence level is 95%.

 
Fig. 8. Plot of the predicted calcium concentration relative error of Random Forest algorithm model and Support Vector Machine 
algorithm from the closed-cycle seawater cooling system training and validation datasets.
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of a closed-cycle seawater cooling system. The prediction 
results aim to establish a basis for enhanced management 
of system operations. The models utilize daily data on 
seawater quality, encompassing parameters such as pH, 
conductivity, and date, as inputs. Both models effectively 
forecasted the calcium concentration in the circulating 
seawater within 1-d intervals. Key performance metrics, 
including the coefficient of determination (R2) and RMSE, 
indicate slightly superior performance of the RF model 
compared to the SVM model. In addition, the RF model 
emerges as a more reasonable and dependable option in 
constructing decision-making models and facilitating pro-
cess control in closed-cycle seawater cooling systems. The 
predictive model presented herein offers an invaluable tool 
for the accurate estimation of calcium ion concentrations, 
contributing profoundly to the enhanced comprehension 
and control of critical parameters within these cooling sys-
tems. This precision is instrumental in mitigating opera-
tional inefficiencies, reducing maintenance costs, and ensur-
ing the optimal functioning of such systems. In essence, 
this research underscores the meaningful role of machine 
learning in advancing the efficacy and sustainability of sea-
water cooling systems. It further highlights the vital impact 
of real-time, data-driven decision support systems, which 
have the potential to revolutionize the management of 
these systems, ultimately promoting environmental stew-
ardship and resource conservation. Thus, the outcomes 
of this investigation signify a pioneering step towards the 
practical application of machine learning in the optimiza-
tion of seawater cooling systems, underlining the research’s 
tangible implications and its promise in the ongoing quest 
for sustainability and efficiency in industrial cooling  
operations.

As a step forward, future directions should encompass 
a comprehensive comparative analysis with moderately 
time-consuming machine learning methods. This compar-
ative evaluation is poised to furnish essential insights into 
the efficacy and efficiency of the machine learning mod-
els deployed in this study. Such an approach can facilitate 
a deeper understanding of the predictive capabilities and 
computational demands of various models, ultimately guid-
ing the selection of the most suitable approach for seawa-
ter parameter modeling. The investigation’s outcomes not 
only underscore its immediate implications but also estab-
lish a promising trajectory for further research and appli-
cation in the domain of seawater quality monitoring and 
industrial process optimization.
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