References

  1. M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 66 (2011) 185–297.
  2. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  4. E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka, J. Belloni, Modification of titanium dioxide with platinum ions and clusters: application in photocatalysis, J. Phys. Chem. C, 112 (2008) 1124–1131.
  5. M.H. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities, Energy Environ. Sci., 2 (2009) 1231–1257.
  6. M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treatment by titanium dioxide: recent updates, Catalysts, 2 (2012) 572–601.
  7. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  8. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 1 (2000) 1–21.
  9. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.
  10. F.R. Xiu, F.S. Zhang, Preparation of nano-Cu2O/TiO2 photocatalyst from waste printed circuit boards by electrokinetic process, J. Hazard. Mater., 172 (2009) 1458–1463.
  11. Y. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow, S. Iijima, Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres, Langmuir, 24 (2008) 547–550.
  12. T.J. Whang, H.Y. Huang, M.T. Hsieh, J.J. Chen, Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue, Int. J. Mol. Sci., 10 (2009) 4707‒4718.
  13. S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
  14. W.J. Zhou, H. Liu, J.Y. Wang, D. Liu, G.J. Du, J.J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity, ACS Appl. Mater. Interfaces, 2 (2010) 2385–2392.
  15. C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, H. Hidaka, N. Serpone, Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B, 106 (2002) 318–324.
  16. X. Yang, H. Tang, J. Xu, M. Antonietti, M. Shalom, Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution, Chem. Sustain. Chem., 8 (2015) 1350–1358.
  17. X. Yang, J. Qin, Y. Jiang, K. Chen, X. Yan, D Zhang, R. Li, H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Appl. Catal., B, 166 (2015) 231–240.
  18. H. Katsumata, M. Taniguchi, S. Kaneco, T. Suzuki, Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light, Catal. Commun., 34 (2013) 30–34.
  19. Z.M. Yang, Y. Tian, G.-F. Huang, W.Q. Huang, Y.Y. Liu, C. Jiao, Z. Wan, X.G. Yan, A. Pan, Novel 3D flower-like Ag3PO4 microspheres with highly enhanced visible light photocatalytic activity, Mater. Lett., 116 (2014) 209–211.
  20. X.G. Ma, B. Lu, D. Li, R. Shi, C.S. Pan, Y.F. Zhu, Origin of photocatalytic activation of silver orthophosphate from first principles, J. Phys. Chem., C, 115 (2011) 4680–4687.
  21. X. Yang, J. Qin, Y. Jiang, R. Li, Y. Li, H. Tang, Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria, RSC Adv., 4 (2014) 18627–18636.
  22. X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen, Y. Jiang, Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation, ACS Appl. Mater. Interfaces, 7 (2015) 15285–15293.
  23. S. Zhang, X. Gu, Y. Zhao, Y. Qiang, Effect of annealing temperature and time on structure, morphology and visiblelight photocatalytic activities Ag3PO4 microparticles, Mater. Sci. Eng., B, 201 (2015) 57–65.
  24. S.H. Lin, C.H. Chiou, C.K. Chang, R.S. Juang, Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation, J. Environ. Manage., 92 (2011) 3098–3104.
  25. EPA, Code of Federal Regulations, Appendix A to Part 423, 126 Priority Pollutants, 2014. Available at: http://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutantlist-epa.pdf
  26. Directive on Environmental Quality Standards (Directive 2008/105/EC). Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:348:0084:0097:en:PDF
  27. J. Xu, F. Wang, W. Liu, W. Cao, Nanocrystalline N-doped TiO2 powders: mild hydrothermal synthesis and photocatalytic degradation of phenol under visible light irradiation, Int. J. Photoenergy, 2013 (2013) 1–7.
  28. D. Wang, Z. Li, L. Shang, J. Liu, J. Shen, Heterostructured Ag3PO4/TiO2 film with high efficiency for degradation of methyl orange under visible light, Thin Solid Films, 551 (2014) 8–12.
  29. X. Cui, Y. Li, Q. Zhang, H. Wang, Silver orthophosphate immobilized on flaky layered double hydroxides as the visiblelight- driven photocatalysts, Int. J. Photoenergy, 2012 (2012) 1–6.
  30. H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, Tuning Photoelectrochemical Performances of Ag−TiO2 nanocomposites via reduction/oxidation of Ag, Chem. Mater., 20 (2008) 6543–6549.
  31. M. Ge, N. Zhu, Y.P. Zhao, J. Li, L. Liu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res., 51 (2012) 5167–5173.
  32. J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal., B, 60 (2005) 211–221.
  33. M. Pelavin, D. Hendrickson, J. Hollander, W. Jolly, Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges, J. Phys. Chem., 74 (1970) 1116–1121.
  34. X. Ma, H. Li, Y. Wang, H. Li, B. Liu, S. Yin, T. Sato, Substantial change in phenomenon of self-corrosion on Ag3PO4/TiO2 compound photocatalyst, Appl. Catal., B, 158–159 (2014) 314–320.
  35. G.F. Huang, Z.L. Ma, W.Q. Huang, Y. Tian, C. Jiao, Z.M. Yang, Z. Wan, A. Pan, Ag3PO4 semiconductor photocatalyst: possibilities and challenges, J. Nanomater., 2013 (2013) 1–8.
  36. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12.
  37. P. Pichat, Photocatalysis and Water Purification from Fundamentals to Recent Applications, 1st ed., Wiley-VCH Verlag, GmBH Germany, 2013.
  38. K. Naeem, O. Feng, Parameters effect on heterogeneous photocatalyzed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci., 21 (2009) 527–533.
  39. J.C. Sin, S.M. Lam, A.R. Mohamed, K.T. Lee, Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review, Int. J. Photoenergy, 2012 (2012) 1–23.
  40. X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal., 3 (2013) 363–369.
  41. G. Zhang, J. Gong, X. Zou, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang, B. Hu, Photocatalytic degradation of azo dye acid red G by KNb3O8 and the role of potassium in the photocatalysis, Chem. Eng. J., 123 (2006) 59–64.
  42. I. Bouzaida, C. Ferronato, J.M. Chovelon, M.E. Rammah, J.M. Herrmann, Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach, J. Photochem. Photobiol., A, 168 (2004) 23–30.
  43. S. Buzby, M.A. Barakat, H. Lin, C. Ni, S.A. Rykov, J.G. Chen, S. Ismat Shah, Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition, J. Vac. Sci. Technol., B, 24 (2006) 1210–1214.