References

  1. U.N.E. Programme, World Water Area (WWA) Programme, The United Nations World Water Development Report 2017, Wastewater: The Untapped Resource, 2017.
  2. World Health Organization. II.UNICEF (WUJE), Supply, Progress on Drinking-Water and Sanitation – 2014 Update, 2014.
  3. Q. Chen, L. Meng, Q. Li, D. Wang, W. Guo, Z. Shuai, L. Jiang, Water transport and purification in nanochannels controlled by asymmetric wettability, Small, 7 (2011) 2225–2231.
  4. Y. Zhou, S. Yu, C. Gao, Reverse osmosis composite membrane (I) chemical structure and performance, J. Chem. Ind. Eng., 6 (2006) 18.
  5. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.
  6. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science, 303 (2004) 62.
  7. D. Zhang, L. Shi, J. Fang, K. Dai, J. Liu, Influence of carbonization of hot-pressed carbon nanotube electrodes on removal of NaCl from saltwater solution, Mater. Chem. Phys., 96 (2006) 140–144.
  8. D. Zhang, L. Shi, J. Fang, K. Dai, Influence of diameter of carbon nanotubes mounted in flow-through capacitors on removal of NaCl from salt water, J. Mater. Sci., 42 (2007) 2471–2475.
  9. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001) 188.
  10. A. Striolo, The mechanism of water diffusion in narrow carbon nanotubes, Nano Lett., 6 (2006) 633.
  11. A. Kalra, S. Garde, G. Hummer, From the cover: osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. USA, 100 (2003) 10175.
  12. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  13. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438 (2005) 44.
  14. Y. Baek, C. Kim, K.S. Dong, T. Kim, J.S. Lee, H.K. Yong, K.H. Ahn, S.B. Sang, C.L. Sang, J. Lim, High performance and antifouling vertically aligned carbon nanotube membrane for water purification, J. Membr. Sci., 460 (2014) 171–177.
  15. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
  16. M. Thomas, B. Corry, T.A. Hilder, What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small, 10 (2014) 1453–1465.
  17. A. Striolo, P.K. Naicker, A.A. Chialvo, P.T. Cummings, K.E. Gubbins, Simulated water adsorption isotherms in hydrophilic and hydrophobic cylindrical nanopores, Adsorption, 11 (2005) 397–401.
  18. Q. Li, D. Yang, J. Shi, X. Xu, S. Yan, Q. Liu, Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane, Desalination, 379 (2016) 164–171.
  19. Q. Li, D.F. Yang, J.H. Wang, Q. Wu, Q.Z. Liu, Biomimetic modification and desalination behavior of (15,15) carbon nanotubes with a diameter larger than 2 nm, Acta Phys. Chim. Sin., 32 (2016) 691–700.
  20. C. Song, B. Corry, Intrinsic ion selectivity of narrow hydrophobic pores, J. Phys. Chem. B, 113 (2009) 7642–7649.
  21. B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ. Sci., 4 (2011) 751–759.
  22. F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy, O. Bakajin, Ion exclusion by sub-2-nm carbon nanotube pores., Proc. Natl. Acad. Sci. USA, 105 (2008) 17250–17255.
  23. F. Fornasiero, J.B. In, S. Kim, H.G. Park, Y. Wang, C.P. Grigoropoulos, A. Noy, O. Bakajin, pH-tunable ion selectivity in carbon nanotube pores, Langmuir, ACS J. Surf. Colloids, 26 (2010) 14848–14853.
  24. Z.E. Hughes, C.J. Shearer, J. Shapter, J.D. Gale, Simulation of water transport through functionalized single-walled carbon nanotubes (SWCNTs), J. Phys. Chem. C, 116 (2012) 24943–24953.
  25. M. Majumder, N. Chopra, B.J. Hinds, Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow, ACS Nano, 5 (2011) 3867–3877.
  26. M. Majumder, X. Zhan, R. Andrews, B.J. Hinds, Voltage gated carbon nanotube membranes, Langmuir, ACS J. Surf. Colloids, 23 (2007) 8624–8631.
  27. Y. Cui, D.A. Bastien, Water transport in human aquaporin-4: molecular dynamics (MD) simulations, Biochem. Biophys. Res. Commun., 412 (2011) 654–659.
  28. S. Haixin, R. Gang, H. Tingjun, X. Xiaojie, T. Guoca, S. Jiushu, C. Lihe, P. Xiaofeng, W. Shikang, H. Guangye, Structure and mechanism of water channels, Progr. Chem., Beijing, 16 (2004) 145–152.
  29. M. Majumder, B. Corry, Anomalous decline of water transport in covalently modified carbon nanotube membranes, Chem. Commun., 47 (2011) 7683–7685.
  30. W. Chan, H. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7 (2013) 5308–5319.
  31. D. Yang, Q. Liu, H. Li, C. Gao, Molecular simulation of carbon nanotube membrane for Li+ and Mg2+ separation, J. Membr. Sci., 444 (2013) 327–331.
  32. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem., 26 (2005) 1781–1802.
  33. A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, Allatom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, 102 (1998) 3586–3616.
  34. Y. Dengfeng, L. Qingzhi, L.I. Hongman, G. Congjie, Molecular dynamics simulation of tip functionalized carbon nanotube membrane for Li+/Mg2+ separation, Chin. J. Appl. Chem., 31 (2014) 1345–1351.
  35. F. Zhu, E. Tajkhorshid, K. Schulten, Pressure-induced water transport in membrane channels studied by molecular dynamics, Biophys. J., 83 (2002) 154–160.
  36. F. Zhu, E. Tajkhorshid, K. Schulten, Theory and simulation of water permeation in aquaporin-1, Biophys. J., 86 (2004) 50–57.
  37. E. Darve, D. Rodríguez-Gómez, A. Pohorille, Adaptive biasing force method for scalar and vector free energy calculations, J. Chem. Phys., 128 (2008) 144120.
  38. J. Hénin, G. Fiorin, C. Chipot, M.L. Klein, Exploring multidimensional free energy landscapes using time-dependent biases on collective variables, J. Chem. Theory Comput., 6 (2010) 35.