References

  1. M.S. Khehra, H.S. Saini, D.K. Sharma, B.S. Chadha, S.S. Chimni, Biodegradation of azo dye C.I. Acid Red 88 by an anoxic–aerobic sequential bioreactor, Dyes Pigm., 70 (2006) 1–7.
  2. S.S. Kumar, T. Muruganandham, M.S.M. Jaabir, Decolourization of azo dyes in a two-stage process using novel isolate and advanced oxidation with hydrogen peroxide/HRP system, Int. J. Curr. Microbiol. Appl. Sci., 3 (2014) 514–522.
  3. R.J. Chudgar, Azo Dyes, J.I. Kroschwitz, M. Howe-Grant, Eds., Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons, Hoboken, NJ, 1991.
  4. C.I. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigm., 58 (2003) 179–196.
  5. C.G. Boer, L. Obici, C.G.M. de Souza, R.M. Peralta, Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme, Bioresour. Technol., 94 (2004) 107–112.
  6. B. Manu, S. Chaudhari, Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time, Process Biochem., 38 (2003) 1213–1221.
  7. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse, 4th ed., McGraw-Hill, New York, 2002.
  8. A. Khalid, M. Arshad, D.E. Crowley, Decolorization of azo dyes by Shewanella sp. under saline conditions, Appl. Microbiol. Biotechnol., 79 (2008) 1053–1059.
  9. C.J. Ogugbue, T. Sawidis, N.A. Oranusi, Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system, Ecol. Eng., 37 (2011) 2056–2060.
  10. C.M. Carliell, S.J. Barclay, C. Shaw, A.D. Wheatley, C.A. Buckley, The effect of salts used in textile dyeing on microbial decolourisation of a reactive azo dye, Environ. Technol., 19 (1998) 1133–1137.
  11. U.S. EPA, Profile of the Textile Industry, U.S. Environmental Protection Agency, Washington, D.C., 1997.
  12. C. Cortés-Lorenzo, M. Rodríguez-Díaz, D. Sipkema, B. Juárez-Jiménez, B. Rodelas, H. Smidt, J. González-López, Effect of salinity on nitrification efficiency and structure of ammoniaoxidizing bacterial communities in a submerged fixed bed bioreactor, Chem. Eng. J., 266 (2015) 233–240.
  13. J.S. Chang, C. Chou, Y.C. Lin, J.Y. Ho, T.L. Hu, Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola, Water Res., 35 (2001) 2814–2850.
  14. A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeterior. Biodegrad., 2 (2007) 73–84.
  15. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: a review, J. Taiwan Inst. Chem. Eng., 42 (2011) 138–157.
  16. F.P. van der Zee, S. Villaverde, Combined anaerobic–aerobic treatment of azo dyes – a short review of bioreactor studies, Water Res., 39 (2005) 1425–1440.
  17. S. Sirianuntapiboon, A. Chaochon, K. Tawisuwan, Effect of anoxic:oxic ratio on the efficiency and performance of sequencing batch reactor (SBR) system for treatment of textile wastewater containing direct dye, Desal. Wat. Treat., 65 (2017) 175–191.
  18. A. Chaochon, S. Sirianuntapiboon, Biological textile dye removal mechanism of direct blue 15 (DB15) by anoxic/oxic-SBR system, Desal. Wat. Treat., 75 (2017) 237–244.
  19. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Eds., Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C., 1998.
  20. S. Sirianuntapiboon, W. Saengow, Removal of vat dyes from textile wastewater using biosludge, Water Qual. Res. J. Can., 39 (2004) 276–284.
  21. W.A. Al-Amrani, P.E. Lim, C.E. Seng, W.S.W. Ngah, Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor, J. Taiwan Inst. Chem. Eng., 45 (2014) 609–616.
  22. P.I.M. Firmino, M.E.R. da Silva, F.J. Cervantes, A.B. dos Santos, Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems, Bioresour. Technol., 101 (2010) 7773–7779.
  23. S. Sirianuntapiboon, J. Sansak, Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes, J. Hazard. Mater., 159 (2008) 404–441.
  24. E. Erden, Y. Kaymaz, N.K. Pazarlioglu, Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor, Electron. J. Biotechnol., 14 (2011) 1–10.
  25. M. Rarunroeng, S. Sirianuntapiboon, Effect of anoxic:oxic ratio on the efficiency and performance of sequencing batch reactor (SBR) system for treatment of industrial estate wastewater containing Cr3+ and Ni2+, Desal. Wat. Treat., 57 (2016) 21752–21769.
  26. A. Uygur, F. Kargı, Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor, Enzyme Microb. Technol., 34 (2004) 313–318.
  27. T. Panswad, C. Anan, Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds, Water Res., 33 (1999) 1165–1172.
  28. Z. She, L. Zhao, X. Zhang, C. Jin, L. Guo, S. Yang, Y. Zhao, M. Gao, Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater, Chem. Eng. J., 88 (2016) 207–215.
  29. G.H. Chen, M.T. Wong, S. Okabe, Y. Watanabe, Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration, Water Res., 37 (2003) 3125–3135.
  30. Z. Fu, F. Yang, Y. An, Y. Xue, Simultaneous nitrification and denitrification coupled with phosphorus removal in a modified anoxic/oxic-membrane bioreactor (A/O-MBR), Biochem. Eng. J. 43 (2009) 191–196.
  31. T. Shinohara, S. Qiao, T. Yamamoto, T. Nishiyama, T. Fujii, T. Kaiho, Z. Bhatti, K. Furukawa, Partial nitritation treatment of underground brine waste with high ammonium and salt content, J. Biosci. Bioeng., 108 (2009) 330–335.
  32. J.P. Bassin, R. Kleerebezem, G. Muyzer, A.S. Rosado, M.C. van Loosdrecht, M. Dezotti, Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors, Appl. Microbiol. Biotechnol., 93 (2012) 1281–1294.
  33. D.C. Kalyani, A.A. Telke, R.S. Dhanve, J.P. Jadhav, Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1, J. Hazard. Mater., 163 (2009) 735–742.
  34. R.G. Saratale, S.S. Gandhi, M.V. Purankar, M.B. Kurade, S.P. Govindwar, S.E. Oh, G.D. Saratale, Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS, J. Biosci. Bioeng., 115 (2013) 658–667.
  35. K. Swaminathan, K. Pachhade, S. Sandhya, Decomposition of a dye intermediate, (H-acid) 1 amino-8-naphthol-3,6 disulfonic acid in aqueous solution by ozonation, Desalination, 186 (2005) 155–164.
  36. A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 56 (2001) 69–80.
  37. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168, Bioresour. Technol., 100 (2009) 3897–3905.
  38. F. Elisangela, Z. Andrea, D.G. Fabio, R.M. Cristiano, D.L. Regina, C.P. Artur, Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process, Int. Biodeterior. Biodegrad., 63 (2009) 280–288.
  39. D. Rawat, V. Mishra, R.S. Sharma, Detoxification of azo dyes in the context of environmental processes, Chemosphere, 155 (2016) 591–605.
  40. K. Watanabe, M. Manefield, M. Lee, A. Kouzuma, Electron shuttles in biotechnology, Curr. Opin. Biotechnol., 20 (2009) 633–641.
  41. T. Zhang, Z. Huang, X. Chen, M. Huang, J. Ruan, Degradation behavior of dimethyl phthalate in an anaerobic/anoxic/oxic system, J. Environ. Manage., 184 (2016) 281–288.
  42. C. Xiao, J. Ning, H. Yan, X. Sun, J. Hu, Biodegradation of aniline by a newly isolated Delftia sp. XYJ6, Chin. J. Chem. Eng., 17 (2009) 500–505.
  43. T. Fujii, M. Takeo, Y. Maeda, Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA, Microbiology, 143 (1997) 93–99.
  44. S. Murakami, T. Hayashi, T. Maeda, S. Takenaka, K. Aoki, Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol, Biosci. Biotechnol. Biochem., 67 (2003) 2351–2358.
  45. P.K. Arora, T.K. Mohanta, A. Srivastava, H. Bae, V.P. Singh, Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG, Microb. Cell Fact., 13 (2014) 164–166.
  46. L.L. Zhang, D. He, J.M. Chen, Y. Liu, Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1, J. Hazard. Mater., 179 (2010) 875–882.
  47. S. Takenaka, S. Murakami, R. Shinke, K. Hatakeyama, H. Yukawa, K. Aoki, Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme, J. Biol. Chem., 272 (1997) 14727–14732.