References

  1. A. El-Hames, A. Hannachi, M. Al-Ahmadi, N Al-Amri, Groundwater quality zonation assessment using GIS, EOFs and hierarchical clustering, Water Resour. Manage., 27 (2013) 2465–2481.
  2. R. Khosravi, H. Eslami, S.A. Almodaresi, M. Heidari, RA. Fallahzadeh, M. Taghavi, M. Khodadadi, R. Peirovi, Use of geographic information system and water quality index to assess groundwater quality for drinking purpose in Birjand City, Iran. Desal. Water Treat., 67 (2017) 74–83.
  3. N. Ağca, Spatial variability of groundwater quality and its suitability for drinking and irrigation in the Amik Plain (South Turkey), Environ. Earth Sci., 72 (2014) 4115–4130.
  4. K. Ebrahimi, S .Feiznia, Assessing temporal and spatial variations of groundwater quality (a case study: Kohpayeh-Segzi), J. Rangeland Sci., 1 (2011) 193–202.
  5. R. Peiravi, H. Alidadi, AA. Dehghan, M. Vahedian, Heavy metals concentrations in Mashhad drinking water network, Zahedan. J. Res. Med. Sci., 15 (2013) 74–76.
  6. Y. Zhou,Y. Wang, Y. Li, F. Zwahlen, J. Boillat, Hydrogeochemical characteristics of central Jianghan Plain, China. Environ. Earth Sci., 68 (2013) 765–778.
  7. N.S. Rao, Groundwater quality as a factor for identification of recharge zones, Environ. Geosci., 14 (2007) 79–90.
  8. A.T. Tizro, K.S. Voudouris, Groundwater quality in the semiarid region of the Chahardouly basin, West Iran. Hydrol. Processes., 22 (2008) 3066–3078.
  9. M. Delbari, P. Afrasiab, M. Salari, Mapping water salinity and sodicity using selected geostatistical methods, case study: Kerman plain, Water Eng., 6 (2013) 11–23.
  10. H. Arslan, Spatial and temporal distribution of areas with drainage problems as estimated by different interpolation techniques, Water Environ. J., 28 (2014) 203–211.
  11. J. Wang, J. Sun, J .Zhang, J. Xiao, Crop water requirement isoline based on GIS and geostatistics, Nongye Gongcheng Xuebao. CSAE., 20 (2004) 51–54.
  12. Y. Xie, T-.b. Chen, M. Lei, J. Yang, Q-j. Guo, B. Song, et al., Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis, Chemosphere, 82 (2011) 468–476.
  13. A. Irmak, P.K. Ranade, D. Marx, S. Irmak, K.G. Hubbard, G. Meyer, et al., Spatial interpolation of climate variables in Nebraska, Trans ASABE., 53 (2010) 1759–1771.
  14. J. Yasrebi, M. Saffari, H. Fathi, N. Karimian, M .Moazallahi, R. Gazni, Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters, Res. J. Biol. Sci., 4 (2009) 93–102.
  15. I. Salih, H. Pettersson, Å. Sivertun, E. Lund, Spatial correlation between radon (222Rn) in groundwater and bedrock uranium (238U): GIS and geostatistical analyses, JOSH, 2 (2002).
  16. C.A. Gotway, R.B. Ferguson, G.W. Hergert, T.A. Peterson, Comparison of kriging and inverse-distance methods for mapping soil parameters, Soil Sci. Soc. Am. J., 60 (1996) 1237–1247.
  17. M. Shamsudduha, Spatial variability and prediction modeling of groundwater arsenic distributions in the shallowest alluvial aquifers in Bangladesh, JOSH., 7 (2008).
  18. R.T. Mehrjardi, M.Z. Jahromi, S. Mahmodi, A. Heidari, Spatial distribution of groundwater quality with geostatistics (case study: Yazd-Ardakan plain), WASJ., 4 (2008) 9–17.
  19. S.H. Ahmadi, A .Sedghamiz, Geostatistical analysis of spatial and temporal variations of groundwater level, Environ. Monit. Assess., 129 (2007) 277–294.
  20. Y. Sun, S. Kang, F. Li, L. Zhang, Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China, Environ. Model. Softw., 24 (2009) 1163–1170.
  21. A. Hooshmand, M. Delghandi, A. IzadiK, A. Aali, Application of kriging and cokriging in spatial estimation of groundwater quality parameters, Afr. J. Agric. Res., 6 (2011) 3402–3408.
  22. A. Moghaddam, M.G. Tekmedash, K. Esmaili, Investigation of temporal and spatial trend of water quality parameters in view of weather fluctuations using GIS; Mashhad Plain, JWSC., 20 (2013) 211–225.
  23. S.M. Sadat Noori, K. Ebrahimi, A.M. Liaghat, A.H. Hoorfar, Comparison of different geostatistical methods to estimate groundwater level at different climatic periods, Water Environ. J., 27 (2013) 10–19.
  24. A.G. Journel, C.J. Huijbregts, Mining geostatistics, New York: Academic press; 1978.
  25. K. Marko, N.S. Al-Amri, A.M. Elfeki, Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia, Arabian J. Geosci., 7 (2014) 5239–5252.
  26. M. Eivazi, A. Mosaedi, An Investigation on spatial pattern of annual precipitation in golestan province by using deterministic and geostatistics models, J. Water Soil., 26 (2012) 53–64.
  27. E .Varouchakis, D. Hristopulos, Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins, Environ. Monit. Assess., 185 (2013) 1–19.
  28. E. Isaaks, R. Srivastava, An introduction to applied geostatistics: Oxford University Press, 561. (1989).
  29. C.S. Wallace, J.M. Watts, S.R. Yool, Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques, Comput. Geosci., 26 (2000) 397–410.
  30. C. Singaraja, GIS-Based Suitability Measurement of Groundwater Resources for Irrigation in Thoothukudi District, Tamil Nadu, India. Water Qual. Exposure Health., 7 (2015) 389–405.
  31. M. Uyan, T. Cay, Spatial analyses of groundwater level differences using geostatistical modeling, Environ. Ecol. Stat., 20 (2013) 633–646.
  32. J. Shalhevet, Using water of marginal quality for crop production: major issues, Agric. Water Manage., 25 (1994) 233–269.
  33. WHO. Guidelines for Drinking Water Quality. Geneva, World Health Organization, 2011.