References
  -  W. Tang, B. Shan, H. Zhang, W. Zhang, Y. Zhao, Y. Ding, N.
    Rong, X. Zhu, Heavy metal contamination in the surface sediments
    of representative limnetic ecosystems in eastern China,
    Sci. Rep., 4 (2014) 7152–7161. 
-  B. Mansouri, R. Baramaki, M. Ebrahimpour, Acute toxicity
    bioassay of mercury and silver on Capoeta fusca, Toxicol. Ind.
    Health., 28 (2012) 393–398. 
-  E. Hoshyari, A. Pourkhabbaz, B. Mansouri, Contaminations of
    metal in tissues of Siberian gull (Larus heuglini): gender, age,
    and tissue differences, Bull. Environ. Contamin. Toxicol., 89
    (2012) 102–106. 
-  P. Swain, S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K.
    Swain, S.S. Mishra, A.K. Sen, J.K. Das, P. Jayasankar, Antimicrobial
    activity of metal based nanoparticles against microbes
    associated with diseases in aquaculture, World. J. Microbiol.
    Biotechnol., 30 (2014) 2491–2502. 
-  L. Peng, F. Xinbin, Y. Qiongzhi, G, Xuefei, X. Jialin, W. Minghung,
    C. Peter, W. Sheng-Chun, The effects of aquaculture on
    mercury distribution, changing speciation, and bioaccumulation
    in a reservoir ecosystem, Environ. Sci. Pollut. Res., 24
    (2017) 25923–25932. 
-  L. Peng, G. Xuefei, Y. Qiongzhi, Z. Jin, C. Yucheng, Z. Chan, W.
    Ming-Hung, W. Sheng-Chun, Role of mariculture in the loading
    and speciation of mercury at the coast of the East China,
    Sea. Environ. Pollut., 218 (2016) 1037–1044. 
-  M. Ebrahimpour, M. Mosavisefat, R. Mohabbati, Acute toxicity
    bioassay of mercuric chloride: An alien fish from a river, Toxicol.
    Environ. Chem., 92 (2010) 169–173. 
-  L.R. Skubal, N.K. Meshkov, Reduction and removal of mercury
      from water using arginine-modified TiO2, J. Photochem. Photobiol.
    A: Chem., 148 (2002) 211–14. 
-  Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Exposure to mercuric
    chloride induces developmental damage, oxidative stress and
    immunotoxicity in zebra fish embryos-larvae, Aquat. Toxicol.,
    181 (2016) 76–85. 
-  Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Reproductive toxicity
    of inorganic mercury exposure in adult zebra fish: Histological
    damage, oxidative stress, and alterations of sex hormone and
    gene expression in the hypothalamic-pituitary-gonadal axis,
    Aquat. Toxicol., 177 (2016) 417–424. 
-  S. Chernousova, M. Epple, Silver as antibacterial agent: Ion,
    nanoparticle, and metal, Angew. Chem. Int. Ed., 52 (2013)
    1636–1653. 
-  C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu,
    Q. Wang, In vivo real-time visualization of tissue blood flow
      and angio genesis using Ag2S quantum dots in the NIR-II window,
    Biomaterials, 35 (2014) 393–400. 
-  I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial
    agent: A case study on E. coli as a model for gram-negative
    bacteria, J. Colloid. Interface. Sci., 275 (2004) 177–182. 
-  H.S. Jiang, L. Yin, N.N. Ren, L. Xian, S. Zhao, W.L.B. Gontero,
    The effects of chronic silver nanoparticles on aquatic system in
    microcosms, Environ. Pollut., 223 (2017) 395–402. 
-  C. Lorenz, L. Windler, N. von Goetz, R.P. Lehmann, M. Schuppler,
    K. Hungerbuhler, M. Heuberger, B. Nowack, Characterization
    of silver release from commercially available functional
    (nano) textiles, Chemosphere, 89 (2012) 817–824. 
-  T. Kunniger, A.C. Gerecke, A. Ulrich, A. Huch, R. Vonbank,
    M. Heeb, A. Wichser, R. Haag, P. Kunz, M. Faller, Release and
    environmental impact of silver nanoparticles and conventional
    organic biocides from coated wooden facades, Environ.
    Pollut., 184 (2014) 464–471. 
-  D.K. Tripathi, A. Tripathi, S. Singh, Y. Singh, K. Vishwakarma,
    G. Yadav, S. Sharma, V.K. Singh, R.K. Mishra, R.G. Upadhyay,
    N.K. Dubey, Y. Lee, D.K. Chauhan, Uptake, accumulation and
    toxicity of silver nanoparticle in autotrophic plants, and heterotrophic
    microbes: a concentric review, Front. Microbiol., 8
    (2017) 1–16. 
-  J.H. Kim, J.S. Lee, J.C. Kan, Effect of inorganic mercury on
    hematological and antioxidant parameters on olive flounder
    Paralichthys olivaceus, Fish. Aquat. Sci., 15 (2012) 215–220. 
-  T. Cappello, P. Pereira, M. Maisano, A. Mauceri, M. Pacheco,
    S. Fasulo, Advances in understanding the mechanisms of
    mercury toxicity in wild golden grey mullet (Liza aurata)
    by 1H NMR-based metabolomics, Environ. Pollut., 219 (2016)
    139–148. 
-  G. Laban, L.F. Nies, R.F. Turco, J.W. Bickham, M.S. Sepulveda,
    The effects of silver nanoparticles on fathead minnow (Pimephales
    promelas) embryos, Ecotoxicol., 19 (2010) 185–195. 
-  L. Murray, M.D. Rennie, E.C. Enders, K. Pleskach, J.D. Martin,
    Effect of nanosilver on cortisol release and morphometrics in
    rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem.,
    36 (2015) 1606–1613. 
-  I. Kim, B.T. Lee, H.A. Kim, K.W. Kim, S.D. Kim, Y.S. Hwang,
    Citrate coated silver nanoparticles change heavy metal toxicities
    and bio accumulation of Daphnia magna, Chemosphere, 143
    (2016) 99–105. 
-  F.F. Cruz, C.E. Leite, T.C. Pereira, M.R. Bogo, C.D. Bonan,
    A.M. Battastini, M.M. Campos, F.B. Morrone, Assessment
    of mercury chloride-induced toxicity and the relevance of
    P2X7 receptor activation in zebra fish larvae, Comp. Biochem.
    Physiol. Part C, 158 (2013) 159–164. 
-  S. Abarghoei, A. Hedayati, R. Ghorbani, H.K. Miandareh, T.
    Bagheri, Histopathological effects of waterborne silver nanoparticles
    and silver salt on the gills and liver of gold fish Carassius
    auratus, Int. J. Environ. Sci. Technol., 13 (2016) 1753–1760. 
-  A. Kumar, B. Sharma, R.S. Pandey, Preliminary evaluation
    of the acute toxicity of cypermethrin and k-Cyhalothrin to
    Channa punctatus, Bull. Environ. Contamin. Toxicol., 79 (2007)
    613–616. 
-  B. Mansouri, A, Maleki, S.A. Johari, N, Reshahmanish, Effects
    of cobalt oxide nanoparticles and cobalt ions on gill histopathology
    of zebra fish (Danio rerio), AACL Bioflux., 8 (2015) 438–444. 
-  B. Mansouri, A. Maleki, S.A. Johari, B. Shahmoradi, E. Mohammadi,
    S. Shahsavari, B. Davari, Histopathological effects of
    copper oxide nanoparticles on the gill and intestine of common
    carp (Cyprinus carpio) in the presence of titanium dioxide
    nanoparticles, Chem. Ecol., 4 (2017) 295–308. 
-  L. Flohé, W.A. Günzler, Assay of glutathione peroxidase,
    Methods. Enzymol., 105 (1984) 115–121. 
-  J.M. McCord, J. Fridovich, Super oxide dismutase: an enzymatic
    function for erythrocuprein (hemocuprein), J. Biol.
    Chem., 244 (1969) 6049–6055. 
-  P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation
    of antioxidant capacity through the formation of
    phosphomolybdenum complex, specific application to the
    determination of vitamin E, Ann. Biochem., 26 (1999) 337–341. 
-  B.Z.W. Vila, J.R.R. Marquardt, A.A. Frohlich, Effect of T-2 toxin
    on in vivo lipid peroxidation and vitamin E status in mice,
    Food Chem. Toxicol., 40 (2002) 479–486. 
-  T. Frankic, T. Pajk, V. Rezar, A. Levart, J. Salobir, The role of
    dietary nucleotides in reduction of DNA damage induced by
    T-2 toxin and deoxynivalenol in chicken leukocytes, Food.
    Chem. Toxicol., 44 (2006) 1838–1844. 
-  F. Majnoni, B. Mansouri, M.R. Rezaei, A.H. Hamidian, Contaminations
    of metals in tissues of common carp, Cyprinus
    carpio and silver carp, Hypophthalmichthys molitrix from Zarivar
    wetland, western Iran, Arch. Polish. Fish, 21 (2013) 11–18. 
-  B.K. Greenfield, S.J. Teh, J.R.M. Ross, J. Hunt, G.H. Zhang, J.A.
    Davis, G. Ichikawa, D. Crane, S.S.O. Hung, D.F. Deng, F.C. Teh,
    P.G. Green, Contaminant concentrations and histopathological
    effects in Sacramento splittail (Pogonichthys macrolepidotus),
    Arch. Environ. Contamin. Toxicol., 55 (2008) 270–281. 
-  V. Poleksic, M. Lenhardt, I. Jaric, D. Djordjevic, Z. Gacic, G. Cvijanovic,
    B. Raskovic, Liver, gills, and skin histopathology and
    heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758), Environ. Toxicol. Chem., 29 (2010) 515–521. 
-  Y. Wu, Q. Zhou, Silver nanoparticles cause oxidative damage
    and histological changes in medaka (Oryzias latipes) after 14
    days of exposure, Environ. Toxicol. Chem., 32 (2013) 165–173. 
-  W. Jiraungkoorskul, S. Sshaphong, N. kangwanrangsan, M.
    Kim, Histopathological study: the effect of ascorbic acid on
    cadmium exposure in fish (Puntius altus), J. Fish. Aquat. Sci., 1
    (2006) 191–199. 
-  R. Macirella, E. Brunelli, Morpho functional alterations in
    zebra fish (Danio rerio) gills after exposure to mercury chloride,
    Int. J. Mol. Sci., 18 (2017) 824–842. 
-  C.A. de Oliveira Ribeiro, L. Belger, E. Pelletier, C. Rouleau, Histopathological
    evidence of inorganic mercury and methyl mercury
    toxicity in the arctic charr (Salvelinus alpinus), Environ.
    Res., 90 (2002) 217–222. 
-  R. Fracário, N.F. Verani, E.L.G. Espíndola, O Rocha, O Rigolin-
    Sá, C.A. Andrade, Alterations on growth and gill morphology
    of Danio rerio (pisces, ciprinidae) exposed to the toxic
    sediments, Brazil, Arc. Biol. Technol., 46 (2003) 685–695. 
-  T. Wang, X. Long, Z. Liu, Y. Cheng, S. Yan, A Comparison effect
    of copper nanoparticles versus copper sulphate on Juvenile
    Epinephelus coioides: growth parameters, digestive enzymes,
    body composition, and histology as biomarkers, Int. J. Genom.,
    2015 (2015) 1–10. 
-  E.F. Pane, A. Haque, C.M. Wood, Mechanistic analysis of acute,
    Niinduced respiratory toxicity in the rainbow trout (Oncorhynchus
    mykiss): an exclusively branchial phenomenon, Aquat.
    Toxicol., 69 (2004) 11–24. 
-  S. Pereira, L.A. Pinto, R. Cortes, A. Fontanhas-Fernandes, A. M.
    Coimbra, S.M. Monteiro, Gill histopathological and oxidative
    stress evaluation in native fish captured in Portuguese northwestern
    rivers, Ecotoxicol Environ. Safe, 90 (2013)157–166. 
-  D.M.S. Santos, M.R.S. Melo, D.C.S. Mendes, I.K.B.S. Rocha, J.P.L.
    Silva, S.M. Cantanhêde, P.C. Meletti, Histological changes in
    gills of two fish species as indicators of water quality in Jansen
    Lagoon (São Luís, Maranhão State, Brazil), Int. J. Environ. Res.
    Public. Health, 11 (2014) 12927–12937. 
-  G.A. Al-Bairuty, B.J. Shaw, R.D. Handy, T.B. Henry, Histopathological
    effects of waterborne copper nanoparticles and copper
    sulphate on the organs of rainbow trout (Oncorhynchus mykiss),
    Aquat. Toxicol., 126 (2013) 104–115. 
-  K.S. Rajkumar, N. Kanipandian, R. Thirumurugan, Toxicity
    assessment on haemotology, biochemical and histopathological
    alterations of silver nanoparticles-exposed freshwater fish
    Labeo rohita, Appl. Nanosci., 6 (2016) 19–29. 
-  T. Ostaszewska, M. Chojnacki, M. Kamaszewski, E. Sawosz-Chwalibóg, Histopathological effects of silver and copper
    nanoparticles on the epidermis, gills, and liver of Siberian
    sturgeon, Environ. Sci. Pollut. Res., 23 (2016) 1621–1633. 
-  G. Sener, A.O. Sehirli, G. Ayanoglu-Dülger, Melatonin protects
    against mercury (II)-induced oxidative tissue damage in rats,
    Pharmacol. Toxicol., 93 (2003) 290–296. 
-  D.A. Monteiro, F.T. Rantin, A.L. Kalinin, Dietary intake of inorganic
    mercury: bioaccumulation and oxidative stress parameters
    in the neotropical fish Hoplias malabaricus, Ecotoxicol., 22
    (2013) 446–456. 
-  X.N. Verlecar, K.B. Jena, G.B. Chainy, Biochemical markers of
    oxidative stress in Perna viridis exposed to mercury and temperature,
    Chem. Biol. Interact., 167 (2007) 219–226. 
-  N.J. Miller, C.A. Rice-Evans, Factors influencing the antioxidant
    activity determined by the ABTS radical cation assay,
    Free. Radic. Res., 26 (1997) 195–199. 
-  E.O. Oruç, N. Uner, Marker enzyme assessment in the liver of
     Cyprinus carpio (L) exposed to 2,4-D and azinphosmethyl, J.
    Biochem. Mol. Toxicol., 16 (2002) 182–188. 
-  R. Thirumavalavan, Effect of mercury on lipid peroxidation
    and antioxidants in gill tissue of fresh water fish, labeo rohita,
    Ijrsr, 5 (2010) 122–124. 
-  A. Margarat, G. Jagadeesan, S. Sethupathy, Comparative effect
    of penicillamine and taurine on mercury poisoned mice, Mus
    musculus, Pollut. Res., 20 (2001) 1–4. 
-  J.L. Franco, H.C. Braga, A.K.C. Nunes, C.M. Ribas, A.P. Silva,
    Lactational exposure to inorganic mercury: evidence of neurotoxic
    effects, Neurobehav. Toxicol. Teratol., 29 (2007) 360–367. 
-  P.C. Pickhardt, M. Stepanova, N.S. Fisher, Contrasting uptake
    routes and tissue distributions of inorganic and methylmercury
    in mosquito fish (Gambusia affinis) and redear sunfish
    (Lepomis microlophus), Environ. Toxicol. Chem., 25 (2006) 2132–2142. 
-  R. Wang, W.X. Wang, Importance of speciation in understanding
    mercury bioaccumulation in tilapia controlled by salinity
    and dissolved organic matter, Environ. Sci. Technol., 44 (2010)
    7964–7969. 
-  A. Boudou, F. Ribeyre, Experimental study of trophic contamination
      of Salmo gairdneri by two mercury compounds—HgCl2
      and CH3HgCl — Analysis at the organism and organ levels,
    Water. Air. Soil. Pollut., 26 (1985) 137–148. 
-  E. Sumesh, M.S. Bootharaju, A.T. Pradeep, A practical silver
      nanoparticle based adsorbent for the removal of Hg2+ from
    water, J. Hazard. Mater., 189 (2011) 450–457. 
-  K.V. Katok, R.L. Whitby, T. Fukuda, T. Maekawa, I. Bezverkhyy,
    S.V. Mikhalovsky, Hyperstoichiometric interaction between
    silver and mercury at the nanoscale, Angew. Chem. Int. Ed.
    Engl., 51 (2012) 2632–2635. 
-  T. Yordanova, P. Vasileva, I. Karadjova, D. Nihtianova, Submicron
    silica spheres decorated with silver nanoparticles as a
    new effective sorbent for inorganic mercury in surface waters,
  Analyst., 139 (2014) 1532–1540.