References

  1. S. Astals, V. Nolla-Ardèvol, J. Mata-Alvarez, Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate, Bioresour. Technol., 110 (2012) 63–70.
  2. R.Z. Gaur, A.A. Khan, S. Suthar, Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production, Chemosphere, 174 (2017) 754–763.
  3. Y. Yang, J. Guo, Z. Hu, Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion, Water Res., 47 (2013) 6790–6800.
  4. C. Moertelmaier, C. Li, J. Winter, C. Gallert, Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision, Bioresour. Technol., 166 (2014) 479–484.
  5. T. Amani, M. Nosrati, S.M. Mousavi, Response surface methodology analysis of anaerobic syntrophic degradation of volatile fatty acids in an upflow anaerobic sludge bed reactor inoculated with enriched cultures, Biotechnol. Bioprocess Eng., 17 (2012) 133–144.
  6. J. Bai, H. Liu, B. Yin, H. Ma, Modeling of enhanced VFAs production from waste activated sludge by modified ADM1 with improved particle swarm optimization for parameters estimation, Biochem. Eng. J., 103 (2015) 22–31.
  7. J. Li, Q. Ban, L. Zhang, A.K. Jha, Syntrophic propionate degradation in anaerobic digestion: a review, Int. J. Agric. Biol., 14 (2012) 843–850.
  8. S. Ahlert, R. Zimmermann, J. Ebling, H. König, Analysis of propionate-degrading consortia from agricultural biogas plants, Microbiologyopen, 5 (2016) 1027–1037.
  9. Q. Ban, J. Li, L. Zhang, Y. Zhang, A.K. Jha, B. Ai, Effect of propionate concentration on degradation characteristics of a propionate enriched culture, J. Harbin Inst. Technol., 45 (2013) 43–47.
  10. T. Narihiro, T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, Y. Sekiguchi, Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method, Water Res., 46 (2012) 2167–2175.
  11. A.J.M. Stams, D.Z. Sousa, R. Kleerebezem, C.M. Plugge, Role of syntrophic microbial communities in high-rate methanogenic bioreactors, Water Sci. Technol., 66 (2012) 352–362.
  12. F.A.M. de Bok, C.M. Plugge, A.J.M. Stams, Interspecies electron transfer in methanogenic propionate degrading consortia, Water Res., 38 (2004) 1368–1375.
  13. H.J.H. Harmsen, M.P. Kengen, A.D.L. Akkermans, A.J.M. Stams, W.M. de Vos, Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes, Appl. Environ. Microbiol., 62 (1996) 1656–1663.
  14. T. Lueders, B. Pommerenke, M.W. Friedrich, Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil, Appl. Environ. Microbiol., 70 (2004) 5778–5786.
  15. Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada, Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules, Appl. Environ. Microbiol., 65 (1999) 1280–1288.
  16. Q. Ban, J. Li, L. Zhang, A.K. Jha, Syntrophic propionate degradation response to temperature decrease and microbial community shift in an UASB Reactor, J. Microbiol. Biotechnol., 23 (2013) 382–389.
  17. P. Worm, F.G. Fermoso, P.N.L. Lens, C.M. Plugge, Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium, Enzyme Microb. Technol., 45 (2009) 139–145.
  18. D.R. Boone, L.Y. Xun, Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture, Appl. Environ. Microbiol., 53 (1987) 1589–1592.
  19. Q. Ban, J. Li, L. Zhang, A.K. Jha, Y. Zhang, Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source, Appl. Biochem. Biotechnol., 171 (2013) 2129–2141.
  20. H.D. Ariesyady, T. Ito, S. Okabe, Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge, Water Res., 41 (2007) 1554–1568.
  21. Q. Ban, J. Li, L. Zhang, A.K. Jha, N. Loring, Linking performance with microbial community characteristics in an anaerobic baffled reactor, Appl. Biochem. Biotechnol., 169 (2013) 1822–1836.
  22. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1995.
  23. Y. Wang, P.Y. Qian, Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies, PLoS One, 4 (2009) 1–9.
  24. L. Lu, D. Xing, N. Ren, Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge, Water Res., 46 (2012) 2425–2434.
  25. P.A. Crawford, J.R. Crowley, N. Sambandam, B.D. Muegge, E.K. Costello, M. Hamady, Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation, Proc. Natl. Acad. Sci., 106 (2009) 11276–11281.
  26. J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, QIIME allows analysis of highthroughput community sequencing data, Nat. Methods, 7 (2010) 335–336.
  27. A.A. Khan, R.Z. Gaur, V.K. Tyagi, B. Lew, V. Diamantis, A.A. Kazmi, I. Mehrotra, Fecal coliform removal from the effluent of UASB reactor through diffused aeration, Desal. Wat. Treat., 39 (2012) 41–44.
  28. A. Khan, R.Z. Gaur, A.A. Kazmi, B. Lew, Sustainable post treatment options of anaerobic effluent, In: R. Chamy, F. Rosenkranz, Biodegradation – Engineering and Technology, InTech, pp. 191–221.
  29. J. Zhang, X. Cai, L. Qi, C. Shao, Y. Lin, J. Zhang, Y. Zhang, P. Shen, Y. Wei, Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying, Appl. Microbiol. Biotechnol., 99 (2015) 7321–7331.
  30. K. Kundu, I. Bergmann, S. Hahnke, M. Klocke, S. Sharma, T.R. Sreekrishnan, Carbon source—a strong determination of microbial community structure and performance of an anaerobic reactor, J. Biotechnol., 168 (2013) 616–624.
  31. D. Riviere, V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho, A. Sghir, Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge, ISME J., 3 (2009) 700–714.
  32. S.B. Conners, E.F. Mongodin, M.R. Johnson, C.I. Montero, K.E. Nelson, R.M. Kelly, Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species, FEMS Microbiol. Rev., 30 (2006) 872–905.
  33. L. Bjornsson, P. Hugenholtz, G.W. Tyson, L.L. Blackall, Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal, Microbiology, 148 (2002) 2309–2318.
  34. S.H. Lee, J.H. Park, S.H. Kim, B.J. Yu, J.J. Yoon, H.D. Park, Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production, Bioresour. Technol., 190 (2015) 543–549.
  35. Y. Liu, W.B. Whitman, Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Ann. N.Y. Acad. Sci., 1125 (2008) 171–189.
  36. C. Wallrabenstein, E. Hauschild, B. Schink, Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate, Arch. Microbiol., 164 (1995) 346–352.
  37. H.J.M. Harmsen, B.L.M. van Kuijk, C.M. Plugge, A.D.L. Akkermans, W.M. de Vos, A.J.M. Stams, Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate reducing bacterium, Int. J. Syst. Bacteriol., 48 (1998) 1383–1387.
  38. T. Shigematsu, S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, K. Kida, Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes, Appl. Microbiol. Biotechnol., 72 (2006) 401–415.
  39. Y. Liu, D.L. Balkwill, H.C. Aldrich, G.R. Drake, D.R. Boone, Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii, Int. J. Syst. Bacteriol., 49 (1999) 545–556.
  40. M.J. McInerney, C.G. Struchtemeyer, J. Sieber, H. Mouttaki, A.J.M. Stams, B. Schink, L. Rohlin, R.P. Gunsalus, Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism, Ann. N.Y. Acad. Sci., 1125 (2008) 58–72.
  41. M.S. Elshahed, M.J. McInerney, Benzoate fermentation by the anaerobic bacterium syntrophus aciditrophicus in the absence of hydrogen-using microorganisms, Appl. Environ. Microbiol., 67 (2001) 5520–5525.
  42. M.J. McInerney, L. Rohlin, H. Mouttaki, U. Kim, R.S. Krupp, L. Rios-Hernandez, J. Sieber, C.G. Struchtemeyer, A. Bhattacharyya, J.W. Campbell, R.P. Gunsalus, The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth, Proc. Natl. Acad. Sci., 104 (2007) 7600–7605.
  43. C. Díaz, S. Baena, M.L. Fardeau, B.K.C. Patel, Aminiphilus circumscriptus gen. nov., sp. nov., ananaerobic amino-aciddegrading bacterium from an upflow anaerobic sludge reactor, Int. J. Syst. Evol. Microbiol., 57 (2007) 1914–1918.
  44. J.L. DiPippo, C.L. Nesbø, H. Dahle, W.F. Doolittle, N.K. Birkland, K.M. Noll, Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid, Int. J. Syst. Evol. Microbiol., 59 (2009) 2991–3000.
  45. A. Grabowski, B.J. Tindall, V. Bardin, D. Blanchet, C. Jeanthon, Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir, Int. J. Syst. Evol. Microbiol., 55 (2005)1113–1121.
  46. H. Shiratori, K. Sasaya, H. Ohiwa, H. Ikeno, S. Ayame, N. Kataoka, A. Miya, T. Beppu, K. Ueda, Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge, Int. J. Syst. Evol. Microbiol., 59 (2009) 1764–1770.
  47. Z. Liu, N.U. Frigaard, K. Vogl, T. Iino, M. Ohkuma, J. Overmann, D.A. Bryant, Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi, Front. Microbiol., 3 (2012) 1–14.
  48. T. Masahiro, M. Takashi, U. Yoshiyuki, G. Masafumi, S. Koji, Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor, Bioresour. Technol., 99 (2008) 4786–4795.
  49. D. Zheng, L. Raskin, Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes, Microb. Ecol., 39 (2000) 246–262.
  50. M. Keyser, R.C. Witthuhn, C. Lamprecht, M.P.A. Coetzee, T.J. Britz, PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules, Syst. Appl. Microbiol., 29 (2006) 77–84.
  51. S. Uyanik, Granule development in anaerobic baffled reactor, Turk. J. Environ. Sci. Eng., 27 (2003) 131–144.
  52. B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: a review, Rev. Environ. Sci. Biol., 7 (2008) 173–190.
  53. Q. Wang, M. Kuninobu, H. Ogawa, Y. Katoa, Degradation of volatile fatty acids in highly efficient anaerobic digestion, Biomass Bioenergy, 16 (1999) 407–416.
  54. J.B. van Lier, K.C.F. Grolle, C.T.M.J. Frijters, A.J.M. Stams, G. Lettinga, Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures, Appl. Environ. Microbiol., 59 (1993) 1003–1011.