References
  -  M. Rezakazemi, A. Khajeh, M. Mesbah, Membrane filtration of
    wastewater from gas and oil production, Environ. Chem. Lett.,
    (2017) 1–22. 
 
  -  A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal
    of heavy metals from industrial wastewaters: a review, Chem-
    BioEng. Rev., 4 (2017) 37–59. 
 
  -  M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima,
    Numerical modeling and optimization of wastewater treatment
    using porous polymeric membranes, Polym. Eng. Sci., 53
    (2013) 1272–1278. 
 
  -  S. Shirazian, M. Rezakazemi, A. Marjani, S. Moradi, Hydrodynamics
    and mass transfer simulation of wastewater treatment
    in membrane reactors, Desalination, 286 (2012) 290–295. 
 
  -  T. Mohammadi, M. Maghami, M. Rezakazemi, High loaded
    synthetic hazardous wastewater treatment using lab-scale
    submerged ceramic membrane bioreactor, Periodica Polytech.
    Chem. Eng., (2017) 1–6. 
 
  -  M. Rezakazemi, S. Shirazian, S.N. Ashrafizadeh, Simulation
    of ammonia removal from industrial wastewater streams by
    means of a hollow-fiber membrane contactor, Desalination,
    285 (2012) 383–392. 
 
  -  M. Rezakazemi, M. Sadrzadeh, T. Mohammadi, In: R. Wilson,
    A.K.S.S.C. George, Transport Properties of Polymeric Membranes,
    Elsevier, Amsterdam, (2018) 243–263. 
 
  -  M. Rezakazemi, K. Shahidi, T. Mohammadi, Synthetic PDMS
    composite membranes for pervaporation dehydration of ethanol,
    Desal. Water Treat., 54 (2014) 1–8. 
 
  -  B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi,
    Performance of PVA/NaA mixed matrix membrane for
    removal of water from ethylene glycol solutions by pervaporation,
    Chem. Eng. Commun., 202 (2014) 316–321. 
 
  -  M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi,
    Pervaporation study of ethylene glycol dehydration
    through synthesized (PVA-4A)/polypropylene mixed matrix
    composite membranes, Polym. Eng. Sci., 53 (2013) 1487-1493. 
 
  -  M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi,
    Transient computational fluid dynamics modeling of pervaporation
    separation of aromatic/aliphatic hydrocarbon mixtures
    using polymer composite membrane, Polym. Eng. Sci., 53
    (2013) 1494–1501. 
 
  -  M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi, A.
    Pak, CFD simulation of water removal from water/ethylene glycol
    mixtures by pervaporation, Chem. Eng. J., 168 (2011) 60–67. 
 
  -  A. Dashti, M. Asghari, Recent progresses in ceramic hollow-fiber
    membranes, Chem. Bio. Eng. Rev., 2 (2015) 54–70. 
 
	-  M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective
    mixed matrix membranes modeling using ANFIS,
    PSO-ANFIS, GA-ANFIS, Intl. J. Hydrogen Energy, 42 (2017)
    15211–15225. 
 
  -  V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan
    polymers: structure, chemistry, solubility, derivatives,
    and applications, Chem. Bio. Eng. Rev., 2 (2015) 204–226. 
 
  -  R. Singh, Production of high-purity water by membrane processes,
    Desal. Water Treat., 3 (2009) 99–110. 
 
  -  B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of
    applying nanofiltration and how to avoid them: A review, Sep.
    Purif. Technol., 63 (2008) 251–263. 
 
  -  J. Schaep, C. Vandecasteele, Evaluating the charge of nanofiltration
    membranes, J. Membr, Sci., 188 (2001) 129–136. 
 
  -  Q. Zhang, H. Wang, S. Zhang, L. Dai, Positively charged nanofiltration
    membrane based on cardo poly (arylene ether sulfone)
    with pendant tertiary amine groups, J. Membr. Sci., 375
    (2011) 191–197. 
 
  -  X.L. Wang, T. Tsuru, M. Togoh, S.I. Nakao, S. Kimura, Transport
    of organic electrolytes with electrostatic and steric-hindrance
    effects through nanofiltration membranes, J. Chem.
    Eng. Japan., 28 (1995) 372–380. 
 
  -  W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation
    of nanofiltration membranes for predictive purposes – use
    of salts, uncharged solutes and atomic force microscopy, J.
    Membr. Sci., 126 (1997) 91–105. 
 
  -  W.R. Bowen, H. Mukhtar, Characterisation and prediction
    of separation performance of nanofiltration membranes, J.
    Membr. Sci., 112 (1996) 263–274. 
 
  -  A. Szymczyk, Y. Lanteri, P. Fievet, Modelling the transport of
    asymmetric electrolytes through nanofiltration membranes,
    Desalination, 245 (2009) 396–407. 
 
  -  C. Labbez, P. Fievet, F. Thomas, A. Szymczyk, A. Vidonne, A.
    Foissy, P. Pagetti, Evaluation of the “DSPM” model on a titania
    membrane: measurements of charged and uncharged solute
    retention, electrokinetic charge, pore size, and water permeability,
    J. Colloid. Interface Sci., 262 (2003) 200–211. 
 
  -  S. Bandini, D. Vezzani, Nanofiltration modeling: the role of
    dielectric exclusion in membrane characterization, Chem. Eng.
    Sci., 58 (2003) 3303–3326. 
 
  -  H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection
    and modelling of sulphate and potassium salts by nanofiltration
    membranes: neural network and Spiegler–Kedem
    model, Desalination, 206 (2007) 42–60. 
 
  -  M. Rostamizadeh, M. Rezakazemi, K. Shahidi, T. Mohammadi,
	  Gas permeation through H2-selective mixed matrix
    membranes: Experimental and neural network modeling, Int.
    J. Hydrogen Energy, 38 (2013) 1128–1135. 
 
  -  M. Rezakazemi, T. Mohammadi, Gas sorption in H2-selective
    mixed matrix membranes: Experimental and neural network
    modeling, Int. J. Hydrogen Energy, 38 (2013) 14035–14041. 
 
  -  M. Rezakazemi, S. Razavi, T. Mohammadi, A.G. Nazari, Simulation
    and determination of optimum conditions of pervaporative
    dehydration of isopropanol process using synthesized
    PVA–APTEOS/TEOS nanocomposite membranes by means of
    expert systems, J. Membr. Sci., 379 (2011) 224–232. 
 
  -  N. Azizi, M. Rezakazemi, M.M. Zarei, An intelligent approach
    to predict gas compressibility factor using neural network
    model, Neural Comput. Applications, (2017) 1–10. 
 
  -  W. Richard Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the
    rate of crossflow membrane ultrafiltration of colloids: A neural
    network approach, Chem. Eng. Sci., 53 (1998) 3793–3802. 
 
  -  N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural
    networks simulation of the filtration of sodium chloride
    and magnesium chloride solutions using nanofiltration membranes,
    Chem. Eng. Res. Des., 85 (2007) 417–430. 
 
  -  T.M. Lee, H. Oh, Y.K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H.
    Nam, S. Lee, Prediction of membrane fouling in the pilot-scale
    microfiltration system using genetic programming, Desalination,
    247 (2009) 285–294. 
 
  -  A. Okhovat, S.M. Mousavi, Modeling of arsenic, chromium
    and cadmium removal by nanofiltration process using genetic
    programming, Appl. Soft Comput., 12 (2012) 793–799. 
 
  -  R. Du, J. Zhao, Properties of poly (N, N-dimethylaminoethyl
    methacrylate)/polysulfone positively charged composite
    nanofiltration membrane, J. Membr. Sci., 239 (2004) 183–188. 
 
  -  Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung,
    Nanofiltration membranes synthesized from hyperbranched
    polyethyleneimine, J. Membr. Sci., 326 (2009) 19–26. 
 
  -  A. Akbari, H. Solymani, S.M.M. Rostami, Preparation and
    characterization of a novel positively charged nanofiltration
    membrane based on polysulfone, J. Applied. Polym. Sci., 132
    (2015). 
 
  -  S. Bila, Y. Harkouss, M. Ibrahim, J. Rousset, E. N’Goya, D.
    Baillargeat, S. Verdeyme, M. Aubourg, P. Guillon, An accurate
    wavelet neural-network-based model for electromagnetic
    optimization of microwave circuits, Intl. J. RF Microwave
    Computer-Aided Eng., 9 (1999) 297–306. 
 
  -  M. Kimura, R. Nakano, Dynamical systems produced by recurrent
    neural networks, Syst. Comput. Japan, 31 (2000) 77–86. 
 
  -  M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
    modeling and response surface methodology of desalination
    by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214. 
 
  -  C. Cojocaru, M. Macoveanu, I. Cretescu, Peat-based sorbents
    for the removal of oil spills from water surface: Application of
    artificial neural network modeling, Colloids Surfaces A: Physicochem.
    Eng. Asp., 384 (2011) 675–684. 
 
  -  M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
    modeling and response surface methodology of desalination
    by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214. 
 
  -  E. Soroush, S. Shahsavari, M. Mesbah, M. Rezakazemi, Z.
    Zhang, A robust predictive tool for estimating CO2 solubility
    in potassium based amino acid salt solutions, Chin. J. Chem.
    Eng., (2017). 
 
  -  R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah,
    Adsorption behavior of Cu(II) and Co(II) using chemically
    modified marine algae, Environ. Technol., (2017) 1–9. 
 
  -  M. Mesbah, E. Soroush, M. Rezakazemi, Development of a
    least squares support vector machine model for prediction
    of natural gas hydrate formation temperature, Chin. J. Chem.
    Eng., 25 (2017) 1238–1248. 
 
  -  J.R. Koza, Genetic Programming, The MIT Press, Cambridge
    MA, USA (1992). 
 
  -  B. Grosman, D.R. Lewin, Automated nonlinear model predictive
    control using genetic programming, Comput. Chem. Eng.,
    26 (2002) 631–640. 
 
  -  M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS,
    PSO-ANFIS, GA-ANFIS, Int. J. Hydrogen Energy, 42 (2017)
    15211–15225. 
 
  -  X.H. Wang, Y.G. Li, Y.D. Hu, Y.L. Wang, Synthesis of heat-integrated
    complex distillation systems via Genetic Programming,
    Comput. Chem. Eng., 32 (2008) 1908–1917. 
 
  -  W. Yuan, A. Odjo, N.E. Sammons, J. Caballero, M.R. Eden, Process
    structure optimization using a hybrid disjunctive-genetic
    programming approach, Comput. Aided Chem. Eng., 27 (2009)
    669–674. 
 
  -  A. Das, M. Abdel-Aty, A genetic programming approach to
    explore the crash severity on multi-lane roads, Accid. Analysis
    & Prevention, 42 (2010) 548–557. 
 
  -  H. Demuth, M. Beale, Neural network toolbox for use with
    MATLAB, Mathworks, Massachusetts, (1993). 
 
  -  A. Khataee, M. Kasiri, Artificial neural networks modeling
    of contaminated water treatment processes by homogeneous
    and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331
	  (2010) 86–100.