References

  1. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  2. D.L. Shaffer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: where are we now?, Desalination, 356 (2015) 271–284.
  3. H.K. Shon, S. Phuntsho, T.C. Zhang, R.Y. Surampalli, Forward Osmosis—Fundamentals and Applications, American Society of Civil Engineers, USA, 2015.
  4. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis, J. Membr. Sci., 242 (2004) 129–153.
  5. M. Ben Boudinar, W.T. Hanbury, S. Avlonitis, Numerical simulation and optimisation of spiral-wound modules, Desalination, 86 (1992) 273–290.
  6. S. Avlonitis, W.T. Hanbury, M. Ben Boudinar, Spiral wound modules performance. An analytical solution: part II, Desalination, 89 (1993) 227–246.
  7. S. Avlonitis, W.T. Hanbury, M. Ben Boudinar, Spiral wound modules performance. An analytical solution: part I, Desalination, 89 (1993) 227–246.
  8. D.H. Jung, J. Lee, D.Y. Kim, Y.G. Lee, M. Park, S. Lee, D.R. Yang, J.H. Kim, Simulation of forward osmosis membrane process: effect of membrane orientation and flow direction of feed and draw solutions, Desalination, 277 (2011) 83–91.
  9. B. Gu, D.Y. Kim, J.H. Kim, D.R. Yang, Mathematical model of flat sheet membrane modules for FO process: plate-and-frame module and spiral-wound module, J. Membr. Sci., 379 (2011) 403–415.
  10. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  11. V.V Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular and curvilinear channels, J. Membr. Sci., 271 (2006) 1–15.
  12. V.V. Ranade, A. Kumar, Comparison of flow structures in spacer-filled flat and annular channels, Desalination, 191 (2006) 236–244.
  13. S. Kook, J. Kim, S.-J. Kim, J. Lee, D. Han, S. Phuntsho, W.-G. Shim, M. Hwang, H.K. Shon, I.S. Kim, Effect of initial feed and draw flowrates on performance of an 8040 spiral-wound forward osmosis membrane element, Desal. Wat. Treat., 72 (2017) 1–12.
  14. Y.C. Kim, S.J. Park, Experimental study of a 4040 spiral-wound forward-osmosis membrane module, Environ. Sci. Technol., 45 (2011) 7737–7745.
  15. V.A. Haaksman, A. Siddiqui, C. Schellenberg, J. Kidwell, J.S. Vrouwenvelder, C. Picioreanu, Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography, J. Membr. Sci., 522 (2017) 124–139.
  16. G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules, Chem. Eng. Process. Process Intensif., 49 (2010) 759–781.
  17. G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow, J. Membr. Sci., 306 (2007) 228–243.
  18. G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of twodimensional multi-layer spacer designs for minimum drag and maximum mass transfer, J. Membr. Sci., 325 (2008) 809–822.
  19. O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics, J. Membr. Sci., 526 (2017) 156–171.
  20. A. Saeed, Effect of feed channel spacer geometry on hydrodynamics and mass transport in membrane modules, PhD Thesis, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Curtin University, 2012.
  21. G.A. Fimbres-Weihs, D.E. Wiley, D.F. Fletcher, Unsteady flows with mass transfer in narrow zigzag spacer-filled channels: a numerical study, Ind. Eng. Chem. Res., 45 (2006) 6594–6603.
  22. A. Storck, D. Hutin, Energetic aspects of turbulence promotion applied to electrolysis processes, Can. J. Chem. Eng., 58 (1980) 92–102.
  23. F. Li, W. Meindersma, A.B. De Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci., 208 (2002) 289–302.
  24. Y.L. Li, K.L. Tung, CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions, Desalination, 233 (2008) 351–358.
  25. A.R. Da Costa, A.G. Fane, C.J.D. Fell, A.C.M. Franken, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62 (1991) 275–291.
  26. S.S. Bucs, A.I. Radu, V. Lavric, J.S. Vrouwenvelder, C. Picioreanu, Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems : a numerical study, Desalination, 343 (2014) 26–37.
  27. A.I. Radu, J.S. Vrouwenvelder, M.C.M. Van Loosdrecht, C. Picioreanu, Modeling the effect of biofilm formation on reverse osmosis performance : flux, feed channel pressure drop and solute passage, J. Membr. Sci., 365 (2010) 1–15.
  28. A.I. Radu, L. Bergwerff, M.C.M. Van Loosdrecht, C. Picioreanu, A two-dimensional mechanistic model for scaling in spiral wound membrane systems, Chem. Eng. J., 241 (2014) 77–91.
  29. J.S. Vrouwenvelder, D.A.G. Von Der Schulenburg, J.C. Kruithof, M.L. Johns, M.C.M. Van Loosdrecht, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes : a feed spacer problem, Water Res., 43 (2009) 583–594.
  30. M. Park, J.H. Kim, Numerical analysis of spacer impacts on forward osmosis membrane process using concentration polarization index, J. Membr. Sci., 427 (2013) 10–20.
  31. J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of unsteady flow and vortex shedding for narrow spacer-filled channels, Ind. Eng. Chem. Res., 42 (2003) 4962–4977.
  32. M. Shakaib, S.M.F. Hasani, M. Mahmood, Study on the effects of spacer geometry in membrane feed channels using threedimensional computational flow modeling, J. Membr. Sci., 297 (2007) 74–89.
  33. M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels, J. Membr. Sci., 326 (2009) 270–284.