References

  1. R.K. Gautam, M.C. Chattopadhyaya, Advanced Oxidation Process-Based Nanomaterials for the Remediation of Recalcitrant Pollutants, Chapter 3, Nanomaterials for Wastewater Remediation, Butterworth-Heinemann, Boston, 2016, pp. 33–48.
  2. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process., 109 (2016) 178–189.
  3. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3 (2016) 22–39.
  4. V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis, J. Photochem. Photobiol., C, 13 (2012) 224–245.
  5. R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications, J. Environ. Chem. Eng., 4 (2016) 4143–4164.
  6. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.-H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  7. J.S. Lee, J. Jang, Hetero-structured semiconductor nanomaterials for photocatalytic applications, Ind. Eng. Chem. Res., 20 (2014) 363–371.
  8. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  9. L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation, J. Hazard. Mater., 261 (2013) 214–223.
  10. J. Fang, L. Xu, Z. Zhang, Y. Yuan, S. Cao, Z. Wang, L. Yin, Y. Liao, C. Xue, Au@TiO2–CdS ternary nanostructures for efficient visible-light-driven hydrogen generation, ACS Appl. Mater. Interfaces, 5 (2013) 8088–8092.
  11. L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renew. Sustain. Energy Rev., 76 (2017) 1393–1421.
  12. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  13. J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Recent progress in enhancing photocatalytic efficiency of TiO2-based materials, Appl. Catal., A, 495 (2015) 131–140.
  14. P. Zhang, M. Fujitsuka, T. Majima, Development of tailored TiO2 mesocrystals for solar driven photocatalysis, J. Energy Chem., 25 (2016) 917–926.
  15. N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review, Ceram. Int., 43 (2017) 14552–14571.
  16. U.G. Akpan, B.H. Hameed, The advancements in sol–gel method of doped-TiO2 photocatalysts, Appl. Catal., A, 375 (2010) 1–11.
  17. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  18. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation: a review, J. Environ. Manage., 198 (2017) 78–94.
  19. C. Wen, A. Yin, W.-L. Dai, Recent advances in silver-based heterogeneous catalysts for green chemistry processes, Appl. Catal., B, 160 (2014) 730–741.
  20. A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Mänttäri, M. Sillanpää, A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere, 107 (2014) 163–174.
  21. X. Liu, L. Pan, T. Lv, Z. Sun, CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method, J. Alloys Compd., 583 (2014) 390–395.
  22. B. Tian, C. Li, F. Gu, H. Jiang, Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2, Catal. Commun., 10 (2009) 925–929.
  23. S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, H. Zhao, Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance, Catal. Commun., 12 (2011) 689–693.
  24. M. Xing, Y. Wu, J. Zhang, F. Chen, Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO, Nanoscale, 2 (2010) 1233–1239.
  25. V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G.L. Puma, Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation, J. Mol. Catal. A: Chem., 327 (2010) 51–57.
  26. E. Kowalska, R. Abe, B. Ohtani, Visible-light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis, Chem. Commun., 2 (2009) 241–243.
  27. Z. Xiong, J. Ma, W.J. Ng, T.D. Waite, X.S. Zhao, Silver-modified mesoporous TiO2 photocatalyst for water purification, Water Res., 45 (2011) 2095–2103.
  28. M.V. Dozzi, L. Prati, P. Canton, E. Selli, Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light, Phys. Chem. Chem. Phys., 11 (2009) 7171–7180.
  29. X. Wang, R.A. Caruso, Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles, J. Mater. Chem., 21 (2011) 20–28.
  30. G. Jiang, X. Wang, Z. Wei, X. Li, X. Xi, R. Hu, B. Tang, R. Wang, S. Wang, T. Wang, W. Chen, Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres, J. Mater. Chem., A, 1 (2013) 2406–2410.
  31. G. Jiang, B. Tang, X. Li, Z. Wei, X. Wang, W. Chen, J. Wan, L. Shen, Preparation of Ag-modified Zn2GeO4 nanorods for photodegradation of organic pollutants, Powder Technol., 251 (2014) 37–40.
  32. G. Jiang, R. Wang, X. Wang, X. Xi, R. Hu, Y. Zhou, S. Wang, T. Wang, W. Chen, Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating, ACS Appl. Mater. Interfaces, 4 (2012) 4440–4444.
  33. W. Fan, M. Leung, Recent development of plasmonic resonancebased photocatalysis and photovoltaics for solar utilization, Molecules, 21 (2016) 180.
  34. W. Hou, S.B. Cronin, A review of surface plasmon resonanceenhanced photocatalysis, Adv. Funct. Mater., 23 (2013) 1612–1619.
  35. P. Nyamukamba, L. Tichagwa, J.C. Ngila, L. Petrik, Plasmonic metal decorated titanium dioxide thin films for enhanced photodegradation of organic contaminants, J. Photochem. Photobiol., A, 343 (2017) 85–95.
  36. J. Augustynski, K. Bienkowski, R. Solarska, Plasmon resonanceenhanced photoelectrodes and photocatalysts, Coord. Chem. Rev., 325 (2016) 116–124.
  37. J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook, Nano Today, 10 (2015) 67–80.
  38. K. Matiullah, Y. Zeng, U. Fawad, M. Wazir, N. Abdul, Z. Muhammad Iqbal, U. Asad, Enhancing the photoactivity of TiO2 by codoping with silver and molybdenum: the effect of dopant concentration on the photoelectrochemical properties, Mater. Res. Express, 4 (2017) 045023.
  39. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Atarod, Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract, J. Alloys Compd., 689 (2016) 15–20.
  40. E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-Aguilar, F.M. Martínez-Pallares, Photocatalytic deposition of Ag nanoparticles on TiO2: metal precursor effect on the structural and photoactivity properties, J. Saudi Chem. Soc., 19 (2015) 563–573.
  41. J. Ginter, A. Kisielewska, K. Spilarewicz-Stanek, M. Cichomski, D. Batory, I. Piwoński, Tuning of the photocatalytic activity of thin titanium dioxide coatings by highly ordered structure and silver nanoparticles, Microporous Mesoporous Mater., 225 (2016) 580–589.
  42. M.F. Abdel Messih, M.A. Ahmed, A. Soltan, S.S. Anis, Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes, J. Photochem. Photobiol., A, 335 (2017) 40–51.
  43. Z. Sarteep, A. Ebrahimian Pirbazari, M.A. Aroon, Silver doped TiO2 nanoparticles: preparation, characterization and efficient degradation of 2,4-dichlorophenol under visible light, J. Water Environ. Nanotechnol., 1 (2016) 135–144.
  44. Y. Yang, H. Li, F. Hou, J. Hu, X. Zhang, Y. Wang, Facile synthesis of ZnO/Ag nanocomposites with enhanced photocatalytic properties under visible light, Mater. Lett., 180 (2016) 97–100.
  45. L. Gomathi Devi, R. Kavitha, A review on plasmonic metal/TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Appl. Surf. Sci., 360 (2016) 601–622.
  46. I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnol. Sci. Appl., 8 (2015) 1–17.
  47. G. Shan, S. Yan, R.D. Tyagi, Y. Surampalli Rao, C. Zhang Tian, Applications of nanomaterials in environmental science and engineering: review, J. Hazard. Toxic Radioact. Waste, 13 (2009) 110–119.
  48. C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water: bridging fundamentals to applications, J. Nanomater., 2013 (2013) 1.
  49. J. Gómez-Pastora, S. Dominguez, E. Bringas, M.J. Rivero, I. Ortiz, D.D. Dionysiou, Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment, Chem. Eng. J., 310 (2017) 407–427.
  50. M. Shekofteh-Gohari, A. Habibi-Yangjeh, Fe3O4/ZnO/CoWO4 nanocomposites: novel magnetically separable visible-lightdriven photocatalysts with enhanced activity in degradation of different dye pollutants, Ceram. Int., 43 (2017) 3063–3071.
  51. A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through p-n heterojunctions, Sep. Purif. Technol., 184 (2017) 334–346.
  52. M. Mousavi, A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible-lightdriven photocatalysts with highly enhanced activity, Adv. Powder Technol., 28 (2017) 1540–1553.
  53. M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci., 465 (2016) 83–92.
  54. A. Akhundi, A. Habibi-Yangjeh, Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity, RSC Adv., 6 (2016) 106572–106583.
  55. Z.-Q. Li, H.-L. Wang, L.-Y. Zi, J.-J. Zhang, Y.-S. Zhang, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation, Ceram. Int., 41 (2015) 10634–10643.
  56. J. Zhan, H. Zhang, G. Zhu, Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces, Ceram. Int., 40 (2014) 8547–8559.
  57. T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts, Appl. Surf. Sci., 288 (2014) 51–59.
  58. U.G. Ahlborg, T.M. Thunberg, H.C. Spencer, Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact, CRC Crit. Rev. Toxicol., 7 (1980) 1–35.
  59. H.-C. Lee, J.-H. In, J.-H. Kim, K.-Y. Hwang, C.-H. Lee, Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
  60. D.D. Dionysiou, A.P. Khodadoust, A.M. Kern, M.T. Suidan, I. Baudin, J.-M. Laîné, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor, Appl. Catal., B, 24 (2000) 139–155.
  61. K. Arnoldsson, P.L. Andersson, P. Haglund, Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
  62. J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light: comparison with titanium oxide, Appl. Catal., B, 34 (2001) 321–333.
  63. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  64. C.A. Huerta Aguilar, T. Pandiyan, J.A. Arenas-Alatorre, N. Singh, Oxidation of phenols by TiO2Fe3O4M (M=Ag or Au) hybrid composites under visible light, Sep. Purif. Technol., 149 (2015) 265–278.
  65. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011) 3534–3539.
  66. J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@mesoporous TiO2 microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis, Talanta, 105 (2013) 20–27.
  67. L. Yinghua, W. Huan, L. Li, C. Wenquan, Facile synthesis of Ag@AgCl plasmonic photocatalyst and its photocatalytic degradation under visible light, Rare Metal Mat. Eng., 44 (2015) 1088–1093.
  68. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental and theoretical study, J. Appl. Phys., 114 (2013) 183514.
  69. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles: application to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010) S52–S58.
  70. Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity under artificial light, Composites Part B, 57 (2014) 105–111.
  71. M.S. Arif Sher Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity, Nanoscale, 5 (2013) 5093–5101.
  72. X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonancemediated photocatalysis by noble metal-based composites under visible light, J. Mater. Chem., 22 (2012) 21337–21354.
  73. M. Guo, J. Du, First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2, Physica B, 407 (2012) 1003–1007.
  74. N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, J. Mol. Catal. A: Chem., 258 (2006) 124–132.
  75. S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli, Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures, ACS Appl. Mater. Interfaces, 6 (2014) 13221–13233.
  76. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasan, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity, Spectrochim. Acta, Part A, 79 (2011) 594–598.
  77. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  78. Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu, Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell, Colloids Surf., A, 402 (2012) 60–65.
  79. K.H. Leong, B.L. Gan, S. Ibrahim, P. Saravanan, Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds, Appl. Surf. Sci., 319 (2014) 128–135.
  80. S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates, ACS Appl. Mater. Interfaces, 4 (2012) 2107–2115.
  81. M. Asiltürk, F. Sayılkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol., A, 203 (2009) 64–71.
  82. K. Koci, K. Zatloukalova, L. Obalova, S. Krejcikova, Z. Lacny, L. Čapek, A. Hospodkova, O. Šolcova, Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst, Chin. J. Catal., 32 (2011) 812–815.
  83. X. Yang, T. Xiao, P.P. Edwards, The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting, Int. J. Hydrogen Energy, 36 (2011) 6546–6552.
  84. L. Wu, A. Li, G. Gao, Zh. Fei, Sh. Xu, Q. Zhang, Efficient photodegradation of 2,4-dichlorophenol in aqueous solution catalyzed by polydivinylbenzene-supported zinc phthalocyanine, J. Mol. Catal. A: Chem., 269 (2007) 183–189.