References

  1. United Nations Food and Agriculture Organization. The state of world fisheries and aquaculture: opportunities and challenges, 4 (2014) 40–41.
  2. M.N. Kutty, Aquaculture: Principles and practices, 2nd ed., Blackwell Publishing Ltd.: Oxford, U.K. 2005.
  3. J.A. Hargreaves, Nitrogen bio geochemistry of aquaculture ponds, Aquaculture, 166 (1998) 181–212.
  4. A.L. Morris, H.J. Hamlin, R. Francis-Floyd, B.J. Sheppard, G.L. Jr, Nitrate induced goiter in captive white spotted bamboo sharks Chiloscyllium plagiosum, J. Aquat. Anim. Health., 23 (2011) 92–99.
  5. J. van Rijn, Waste treatment in recirculating aquaculture systems, Aquacul. Eng., 53 (2013) 49–56.
  6. N. Shnel, Y. Barak, T. Ezer, Z. Dafni, J. van Rijn, Design and performance of a zero-discharge tilapia recirculating system, Aquacult. Eng., 26 (2002)191–203.
  7. G.J. Chris, P. van Bussel, J.P. Schroeder, W. Sven, S. Carsten, The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima), J. Aquaculture, 326 (2012) 163–167.
  8. L. Chu, J. Wang, Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed bio film reactor for treating wastewater with a low C/N ratio, Chemosphere, 83 (2011) 63–68.
  9. W.J.B. Saliling, P.W. Westerman, T.M. Losordo, Wood chips and wheat straw as alternative bio filter media for denitrification reactors treating aquaculture and other waste waters with high nitrate concentrations, Aquacult. Eng., 37 (2007) 222–233.
  10. K.C. Lee, B.E. Rittmann, Effects of pH and precipitation on auto hydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor, Water Res., 37 (2003) 1551– 1556. 11] S.H. Lee, S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos. Part A: Appl. Sci. Manufac., 37 (2006) 80–91.
  11. A. Boley, W.R. Muller, G. Haider, Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems, Aquacult. Eng., 22 (2000) 75–85.
  12. W. Wu, F. Yang, L. Yang, Biological denitrification with a novel biodegradable polymer as carbon source and bio film carrier, Bioresour. Technol., 118 (2012) 136–140.
  13. N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, Polymer biodegradation: Mechanisms and estimation techniques, Chemosphere, 73 (2008) 429–442.
  14. S.R. Chae, S.T. Kang, Y. Watanabe, H.S. Shin, Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients, Water Res., 40 (2006) 2161–2167.
  15. X.M. Wang, J.L. Wang, Nitrate removal from groundwater using solid-phase denitrification process with out inoculating with external microorganisms, Int. J. Environ. Sci. Technol., 10 (2013) 955–960.
  16. Q. Zhang, F. Ji, X. Xu, Effects of physico chemical properties of poly-e-caprolactone on nitrate removal efficiency during solid- phase denitrification, Chem. Eng. J., 283 (2016) 604–613.
  17. Y. Horiba, S. Khan, A. Hirashi, Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly (ɛ-caprolactone) as the carbon and energy source, Microbes. Environ., 20 (2005) 25–33.
  18. P. Li, J. Zuo, Y. Wang, J. Zhao, L. Tang, Z. Li, Tertiary nitrogen removal for municipal wastewater using a solid phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium, Water Res., 93 (2016) 74–83.
  19. A.L. Rodrigues, A.V. Machado, J. Mobrega, A. Albuquerque, A. Brito, A poly-epsilon-caprolactone based bio film carrier for nitrate removal from water, Int. J. Environ. Sci. Technol., 11 (2014) 263–268.
  20. X.M. Wang, J.L. Wang, Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source, Sci. China. Chem., 52 (2009) 236–240.
  21. G. Luo, L. Li, O. Liu, G. Xu, H. Tan, Effect of dissolved oxygen on heterotrophic denitrification using poly (butylene succinate) as the carbon source and bio film carrier, Bioresour. Technol., 171 (2014) 152–158.
  22. G. Luo, G. Xu, H. Tan, J. Gao, W. Liu, Effect of dissolved oxygen on denitrification using polycaprolactone as both the organic carbon source and the bio film carrier, Int. Biodeter. Biodegr., 110 (2016) 155–162.
  23. SEPA. 2004. Report on the State of the Environment in China, Available from: http://www.zhb.gov.cn/english/SOE/soechina2004/index.htm.
  24. S.Y. Jia, H.J. Han, H.F. Zhuang, B. Hou, K. Li, Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition, Bioresour. Technol., 192 (2015) 507–513.
  25. J. Wang, L. Chu, Biological nitrate removal from water and wastewater by solid-phase denitrification process, Biotech. Adv., 34 (2016) 1103–1107.
  26. J. Davidson, C. Good, C. Welsh, S.T. Summerfelt, Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus my kiss within water recirculating aquaculture systems, Aquacult. Eng., 59 (2014) 30–40.
  27. J.A. Chun, R.A. Cooke, J.W. Eheart, M.S. Kang, Estimation of flow and transport parameters for wood chip-based bioreactors: I. laboratory-scale bioreactor, Biosyst. Eng., 104 (2009) 384–395.
  28. C.M. Greenan, T.B. Moorman, T.C. Kaspar, T.B. Parkin, D.B. Jaynes, Comparing carbon substrates for denitrification of subsurface drainage water, J. Environ. Qual., 35 (2006) 824–829.
  29. S. Zhu, S. Chen, Effects of organic carbon on nitrification rate in fixed film biofilters, Aquacul. Eng., 25 (2001) 1–11.
  30. Y. Honda, Z. Osawa, Microbial denitrification of wastewater using biodegradable polycaprolactone, Polym. Degrad. Stabil., 76 (2002) 321–327.
  31. Z.Q. Shen, J.L. Wang, Biological denitrification using crosslinked starch/PCL blends as solid carbon source and biofilm carrier, Bioresour. Technol., 102 (2011) 8835–8838.
  32. J. van Rijn, Y. Tal, H.J. Schreier, Denitrification in recirculating systems: theory and applications, Aquac. Eng., 34 (2006) 364–376.
  33. D.M. Abou-Zeid, R.J. Muller, W.D. Deckwer, Degradation of natural and synthetic polyesters under anaerobic conditions, J. Biotechnol., 86 (2001) 113–126.
  34. L. Chu, J. Wang, Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source, Chemosphere, 91 (2013) 1310–1316.
  35. O. Schneider, M. Chabrillo-Popelk, H. Smidt, O. Haenen, V. Sereti, HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents, FEMS Microbiol. Ecol., 60 (2009) 207–219.
  36. K. Heylen, D. Gevers, B. Vanparys, L. Wittebolle, J. Geets, The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers, Environ. Microbio., 8 (2006) 2012–2021.
  37. S.T. Khan, A. Hiraishi, Diaphoro bacternitro reducens gen nov., spnov., a poly (3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge, J. Gen. Appl. Microbiol., 48 (2002) 299–308.
  38. J. Mergaert, J. Swings, Biodiversity of microorganisms that degrade bacterial and synthetic polyesters, J. Ind. Microbiol., 17 (1986) 463–469.
  39. R. Li, C. Feng, W. Hu, B. Xi, N. Chen, B. Zhao, Y. Liu, C. Hao, J. Pu, Wood chip-sulfur based heterotrophic and auto trophic denitrification (WSHAD) process for nitrate contaminated water remediation, Water Res., 89 (2016) 171–179.
  40. S.M. Zhu, Y.L. Deng, Y.J. Ruan, X.S. Guo, M.M. Shi, J.Z. Shen, Biological denitrification using poly (butylenesuccinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment, Bioresour. Technol., 19 (2015) 603–610.
  41. A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeter. Biodegr., 59 (2007) 73–84.
  42. A. Hiraishi, S.T. Khan, Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment, Appl. Microbiol. Biot., 61 (2003) 103–109.
  43. S.T. Khan, Y. Horiba, N. Takahashi, A. Hiraishi, Activity and community composition of denitrifying bacteria in poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using solid-phase denitrification processes, Microbes Environ., 22 (2007) 20–31.
  44. O.O. Nalcaci, N. Boke, B. Ovez, Potential of the bacterial strain Acidovoraxavenae subsp. avenae LMG17238 and macro algae Gracilariaverrucosa for denitrification, Desalination, 274 (2011) 44–53.
  45. P.A. Kumar, T.N. Srinivas, S. Madhu, R. Sravan, S. Singh, S.W.A. Naqvi, S. Mayilraj, S. Shivaj, Cecembialonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from ahaloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella, Int. J. Syst. Evol. Micr., 62 (2012) 2252–2258.
  46. W.Z. Wu, L.H. Yang, J.L, Wang, Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor, Environ. Sci. Pollut. Res., 20 (2013) 333–339.
  47. H.P. Bacosa, C. Inoue, Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, J. Hazard. Mater., 283 (2015) 689–697.
  48. J. Mergaert, M.C. Cnockaert, J. Swings, Thermomonasfusca sp. nov. and Thermomonasbrevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly (e-caprolactone) plastic beads as fixed bed, and emended description of the genus Thermomonas, Int. J. Syst. Evol. Microbiol., 53 (2003) 1961–1966.
  49. Z.F. Liu, N.U. Frigaard, K. Vogl, T. Lino, M. Ohkuma, Complete genome of Ignavi bacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi, Front. Microbiol., 3 (2012) 185.
  50. A.R. Snyder, H.N. Williams, M.L. Baer, K.E. Walker, Q.C. Stineet, 16S rDNA sequence analysis of environmental Bdellovibrio- and-like organisms (BALO) reveals extensive diversity, Int. J. Syst. Evol. Microbiol., 52 (2002) 2089–2094.
  51. H. Cao, S. He, H. Wang, S. Hou, L. Lu, X. Yang, Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonashydrophila, Vet. Microbiol., 154 (2012) 413–418.
  52. Z. Qi, X. Zhang, N. Boon, P. Bossier, Probiotics in aquaculture of China-current state, problems and prospect, Aquaculture, 290 (2009) 15–21.
  53. J.H. Ou, H.L. Yuan, Seiminibacteriumsalmoneumgen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir, Int. J. Syst. Evol. Microbiol., 58 (2008) 2191–2194.
  54. Q. Zhang, Y.W. Jie, W. Long, J. Zhang, A.G. Fane, K. Kjelleberg, S.A. Rice, D. McDougald, Characterization of bio fouling in a lab-scale forward osmosis membrane bioreactor (FOMBR), Water Res., 58 (2014) 141–151.
  55. D. Cheneby, L. Philippot, A. Hartmann, C. Hénault, J.C. Germon, 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils, FEMS Microbiol. Ecol., 34 (2000) 121–128.
  56. J. Mergaert, A. Boley, M.C. Cnockaert, W.R.J. Müller, Identity and potential functions of hetero trophic bacterial isolates from a continuous-up flow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor, Syst. Appl. Microbiol., 24 (2001) 303–310.
  57. W.Z. Wu, L.H. Yang, J.L. Wang, Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor, Environ. Sci. Pollut. Res., 20 (2013) 333–339.