References
  -  M.A. Barakat, New trends in removing heavy metals from
    industrial wastewater, Arab. J. Chem., 4 (2011) 361–377. 
 
  -  K. Tamaoki, N. Saito, T. Nomura, Y. Konishi, Microbial recovery
    of rhodium from dilute solutions by the metal ion–reducing
    bacterium Shewanella algae, Hydrometallurgy, 139 (2013)
    26–29. 
 
  -  J. Li, X. Wang, H. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang,
    Functionalization of biomass carbonaceous aerogels and their
    application as electrode materials for electro-enhanced recovery
    of metal ions, Environ. Sci.: Nano, 4 (2017) 1114–1123. 
 
  -  S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
    Review on the science and technology of water desalination by
    capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442. 
 
  -  M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V.
    Presser, Water desalination via capacitive deionization: what
    is it and what can we expect from it?, Energy. Environ. Sci., 8
    (2015) 2296–2319. 
 
  -  K. Laxman, M.T.Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov, J.
    Dutta, Desalination and disinfection of inland brackish ground
    water in a capacitive deionization cell using nanoporous activated
    carbon cloth electrodes, Desalination, 362 (2015) 126–132. 
 
  -  I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach,
    The effect of the flow-regime, reversal of polarization, and
    oxygen on the long term stability in capacitive de-ionization
    processes, Electrochim. Acta, 153 (2015) 106–114. 
 
  -  X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced salt removal
    in an inverted capacitive deionization cell using amine modified
    microporous carbon cathodes, Environ. Sci. Technol., 49
    (2015) 10920–10926. 
 
  -  A. Subramani, J.G. Jacangelo, Emerging desalination technologies
    for water treatment: A critical review, Water Res., 75 (2015)
    164–187. 
 
  -  M. Biro, D.B. Vončina, Innovative approach to treating waste
    waters by a membrane capacitive deionisation system, Chem.
    Pap., 70 (2016) 576–584. 
 
  -  Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbon-
    based composite materials for capacitive deionization,
    RSC Adv., 5 (2015) 15205–15225. 
 
  -  K. Laxman, L.A. Gharibi, J. Dutta, Capacitive deionization
    with asymmetric electrodes: Electrode capacitance vs electrode
    surface area, Electrochim. Acta, 176 (2015) 420–425. 
 
  -  K. Laxman, M.T.Z. Myint, R. Khan, T. Pervez, J. Dutta, Effect
    of a semiconductor dielectric coating on the salt adsorption
    capacity of a porous electrode in a capacitive deionization cell,
    Electrochim. Acta, 166 (2015) 329–337. 
 
  -  H.-J. Liu, J. Wang, C.-X. Wang, Y.-Y. Xia, Ordered hierarchical
    mesoporous/microporous carbon derived from mesoporous
    titanium-carbide/carbon composites and its electrochemical
    performance in supercapacitor, Adv. Energy Mater., 1 (2011)
    1101–1108. 
 
  -  K.B. Hatzell, M.C. Hatzell, K.M. Cook, M. Boota, G.M. Housel,
    A. McBride, E.C. Kumbur, Y. Gogotsi, Effect of oxidation
    of carbon material on suspension electrodes for flow electrode
    capacitive deionization, Environ. Sci. Technol., 49 (2015) 3040–3047. 
 
  -  K. Laxman, M.T.Z. Myint, R. Khan, T. Pervez, J. Dutta,
    Improved desalination by zinc oxide nanorod induced electric
    field enhancement in capacitive deionization of brackish
    water, Desalination, 359 (2015) 64–70. 
 
  -  Y. Qu, T.F. Baumann, J.G. Santiago, M. Stadermann, Characterization
    of resistances of a capacitive deionization system,
    Environ. Sci. Technol., 49 (2015) 9699–9706. 
 
  -  K. Sharma, Y.H. Kim, J. Gabitto, R.T. Mayes, S. Yiacoumi, H.Z.
    Bilheux, L.M.H. Walker, S. Dai, C. Tsouris, Transport of ions in
    mesoporous carbon electrodes during capacitive deionization
    of high-salinity solutions, Langmuir, 31 (2015) 1038–1047. 
 
  -  F. Zaera, Probing liquid/solid interfaces at the molecular level,
    Chem. Rev., 112 (2012) 2920–2986. 
 
  -  H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena,
    Academic Press, Cambridge, Massachusetts, 2006. 
 
  -  P.M. Biesheuvel, Y. Fu, M.Z. Bazant, Diffuse charge and Faradaic
    reactions in porous electrodes, Phys. Rev. E, 83 (2011)
    061507. 
 
  -  P.M. Biesheuvel, S. Porada, M. Levi, M.Z. Bazant, Attractive
    forces in microporous carbon electrodes for capacitive deionization,
    J. Solid State Electrochem., 18 (2014) 1365–1376. 
 
  -  P.M. Biesheuvel, M.E. Suss, H.V.M. Hamelers, Theory of water
    desalination by porous electrodes with fixed chemical charge,
    arXiv:1506.03948, (2015). 
 
  -  S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison,
    K.J. Keesman, S. Kaskel, P.M. Biesheuvel, V. Presser, Direct
    prediction of the desalination performance of porous carbon
    electrodes for capacitive deionization, Energy. Environ. Sci., 6
    (2013) 3700–3712. 
 
  -  P.M. Biesheuvel, B. van Limpt, A. van der Wal, Dynamic
    adsorption/desorption process model for capacitive deionization,
    J. Phys. Chem. C, 113 (2009) 5636–5640. 
 
  -  P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory of
    membrane capacitive deionization including the effect of the
    electrode pore space, J. Colloid Interface Sci., 360 (2011) 239–
    248. 
 
  -  J.E. Dykstra, R. Zhao, P.M. Biesheuvel, A. van der Wal, Resistance
    identification and rational process design in capacitive
    deionization, Water Res., 88 (2016) 358–370. 
 
  -  B.G. Jeon, H.C. No, Development of a two-dimensional coupled-
    implicit numerical tool for analysis of the CDI operation,
    Desalination, 288 (2012) 66–71. 
 
  -  J.-H. Ryu, T.-J. Kim, T.-Y. Lee, I.-B. Lee, A study on modeling
    and simulation of capacitive deionization process for wastewater
    treatment, J. Taiwan Inst. Chem. E, 41 (2010) 506–511. 
 
  -  R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van
    der Wal, Charge efficiency: a functional tool to probe the double-
    layer structure inside of porous electrodes and application
    in the modeling of capacitive deionization, J. Phys. Chem.
    Lett., 1 (2010) 205–210. 
 
  -  Y.A.C. Jande, W.S. Kim, Predicting the lowest effluent concentration
    in capacitive deionization, Sep. Purif. Technol., 115
    (2013) 224–230. 
 
  -  M. Andelman, Flow through capacitor basics, Sep. Purif. Technol.,
    80 (2011) 262–269. 
 
  -  T.-Y. Ying, K.-L. Yang, S. Yiacoumi, C. Tsouris, Electrosorption
    of ions from aqueous solutions by nanostructured carbon
    aerogel, J. Colloid Interface Sci., 250 (2002) 18–27. 
 
  -  O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes, C.
    Hidrovo, Energetic performance optimization of a capacitive
    deionization system operating with transient cycles and
    brackish water, Desalination, 314 (2013) 130–138. 
 
  -  L.D. Landau, G. Zito, Digital Control Systems: Design, Identification
    and Implementation, Springer-Verlag, 2006. 
 
  -  T. Kailath, Linear Systems, Prentice Hall, 1980. 
 
  -  W. Cheney, D. Kincaid, Numerical Mathematics and Computing,
    Brooks-Cole, 2012. 
 
  -  C. Brasquet, P. Le Cloirec, Effects of activated carbon cloth
    surface on organic adsorption in aqueous solutions. use of statistical
    methods to describe mechanisms, Langmuir, 15 (1999)
    5906–5912. 
 
  -  J.W. Shim, S.J. Park, S.K. Ryu, Effect of modification with HNO3
    and NaOH on metal adsorption by pitch-based activated carbon
    fibers, Carbon, 39 (2001) 1635–1642. 
 
  -  J.-H. Lee, W.-S. Bae, J.-H. Choi, Electrode reactions and adsorption/
    desorption performance related to the applied potential
    in a capacitive deionization process, Desalination, 258 (2010)
    159–163. 
 
  -  C. Wang, H. Song, Q. Zhang, B. Wang, A. Li, Parameter optimization
    based on capacitive deionization for highly efficient
    desalination of domestic wastewater biotreated effluent and
    the fouled electrode regeneration, Desalination, 365 (2015)
    407–415.