References

  1. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon — a critical review, Chemosphere, 58 (2005) 1049–1070.
  2. M.L. Soto, A. Moure, H. Dominguez, J.C. Parajo, Recovery, concentration and purification of phenolic compounds by adsorption: a review, J. Food Eng., 105 (2011) 1–27.
  3. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336–1349.
  4. I. Ali, M. Hasim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  5. V.S. Tran, H.H. Ngo, W. Guo, J. Zhang, S. Liang, C. Ton-That, X. Zhang, Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water, Bioresour. Technol., 182 (2015) 353–363.
  6. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review, Sustain. Mater. Technol., 9 (2016) 10–40.
  7. M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review, Pol. J. Environ. Stud., 26 (2017) 479–510.
  8. A.T. Proudfoot, Pentachlorophenol poisoning, Toxicol. Rev., 22 (2003) 3–11.
  9. J. Michałowicz, J. Stufka-Olczyk, A. Milczarek, A. Michniewicz, Analysis of annual fluctuations in the content of phenol, chlorophenols and their derivatives in chlorinated drinking waters, Environ. Sci. Pollut. Res., 18 (2011) 1174–1183.
  10. R. Leyva-Ramos, L.A. Bernal-Jacome, J. Mendoza- Barron, M.M.G. Hernandez-Orta, Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon, J. Taiwan Inst. Chem. Eng., 40 (2009) 622–629.
  11. N.T. Abdel-Ghani, G.A. El-Chaghaby, E.M. Zahran, Pentachlorophenol (PCP) adsorption from aqueous solution by activated carbons prepared from corn wastes, Int. J. Environ. Sci. Technol., 12 (2015) 211–222.
  12. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased activated carbon ability in the removal of phenol-based organics from aqueous media, Desal. Wat. Treat., 57 (2016) 5529–5545.
  13. T. Viraraghavan, K. Slough, Sorption of pentachlorophenol on peat-bentonite mixtures, Chemosphere, 39 (1999) 1487–1496.
  14. W.M. Law, W.N. Lau, K.L. Lo, L.M. Wai, S.W. Chiu, Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius, Chemosphere, 52 (2003) 1531–1537.
  15. I. Bras, L. Lemos, A. Alves, M.F.R. Pereira, Sorption of pentachlorophenol on pine bark, Chemosphere, 60 (2005) 1095–1102.
  16. B.N. Estevinho, N. Ratola, A. Alves, L. Santos, Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues, J. Hazard. Mater., B137 (2006) 1175–1181.
  17. Y. He, F. Zeng, Z. Lian, J. Xu, P.C. Brookes, Natural soil mineral nanoparticles are novel sorbents for pentachlorophenol and phenanthrene removal. Environ. Pollut., 205 (2015) 43–51.
  18. K. Kuśmierek, P. Idźkiewicz, A. Świątkowski, L. Dąbek, Adsorptive removal of pentachlorophenol from aqueous solutions using powdered eggshell, Arch. Environ. Prot., 43 (2017) 10–16.
  19. M. Feizi, M. Jalali, Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues, J. Taiwan Inst. Chem. Eng., 54 (2015) 125–136.
  20. A. Witek-Krowiak, Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process, Chem. Eng. J., 192 (2012) 13–20.
  21. B.H. Hameed, Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, J. Hazard. Mater., 154 (2008) 204–212.
  22. J.F. Osma, V. Saravia, J.L. Toca-Herrera, S. Rodriguez Couto, Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions, J. Hazard. Mater., 147 (2007) 900–905.
  23. S.W. Ong, P.S. Keng, S.L. Lee, M.H. Leong, Y.T. Hung, Equilibrium studies for the removal of basic dye by sunflower seed husk (Helianthus annuus), Int. J. Phys. Sci., 5 (2010) 1270–1276.
  24. K. Kuśmierek, A. Świątkowski, L. Dąbek, Removal of 2,4,6-trichlorophenol from aqueous solutions using agricultural waste as low-cost adsorbents, Environ. Prot. Eng., 43 (2017) 149–163.
  25. R. Rojas, J. Morillo, J. Usero, E. Vanderlinden, H. El Bakouri, Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions, J. Hydrol., 520 (2015) 461–472.
  26. T. Altun, E. Pehlivan, Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond-shells, Clean, 35 (2007) 601–606.
  27. T. Altun, E. Pehlivan, Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell, J. Hazard. Mater., 155 (2008) 378–384.
  28. F. Ferrero, Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust, J. Hazard. Mater., 142 (2007) 144–152.
  29. M. Dogan, H. Abak, M. Alkan, Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms, Water Air Soil Pollut., 192 (2008) 141–153.
  30. K. Kuśmierek, A. Świątkowski, Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells, Pol. J. Chem. Technol., 17 (2015) 23–31.
  31. M.H. Baki, F. Shemirani, R. Khani, Potential of sawdust as a green and economical sorbent for simultaneous preconcentration of trace amounts of cadmium, cobalt, and lead from water, biological, food, and herbal samples, J. Food Sci., 78 (2013) T797–T804.
  32. M. Özacar, I.A. Sengil, A kinetic study of metal complex dye sorption onto pine sawdust, Process Biochem., 40 (2005) 565–572.
  33. A. Witek-Krowiak, Biosorption of malachite green from aqueous solutions by pine sawdust: equilibrium, kinetics and the effect of process parameters, Desal. Wat. Treat., 51 (2013) 3284–3294.
  34. M. Tobiszewski, Sorption of Chlorinated Solvents on Pine and Oak Sawdust, 5th International Conference on Environmental Science and Technology IPCBEE, Vol. 69, 2014, pp. 45–48.
  35. K. Kuśmierek, K. Olkowicz, A. Świątkowski, Efficacy assessment of 2,4,6-trichlorophenol adsorption on sawdust from model water solutions, Ochr. Srod., 37 (2015) 19–24 (in Polish).
  36. C. Djelloul, A. Hasseine, Ultrasound-assisted removal of methylene blue from aqueous solution by milk thistle seed, Desal. Wat. Treat., 51 (2013) 5805–5812.
  37. C. Djelloul, A. Hasseine, O. Hamdaoui, Adsorption of cationic dye from aqueous solution by milk thistle seeds: isotherm, kinetic and thermodynamic studies, Desal. Wat. Treat., 78 (2017) 313–320.
  38. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  39. K. Kuśmierek, A. Świątkowski, The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes, Desal. Wat. Treat., 56 (2015) 2807–2816.
  40. S. Lagergren, Theorie der sogenannten adsorption geloester stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  41. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  42. W. Weber Jr., J. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 18 (1963) 31–42.
  43. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  44. K. Skrzypczyńska, K. Kuśmierek, A. Świątkowski, L. Dąbek, The influence of pencil graphite hardness on voltammetric detection of pentachlorophenol, Int. J. Electrochem. Sci., 13 (2018) 88–100.